ترغب بنشر مسار تعليمي؟ اضغط هنا

Whitham modulation theory for generalized Whitham equations and a general criterion for modulational instability

76   0   0.0 ( 0 )
 نشر من قبل Mark Hoefer Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearity $f(u) = tfrac{1}{2}u^2$ of the Korteweg-de Vries equation and the full linear dispersion relation $Omega(k) = sqrt{ktanh k}$ of uni-directional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whithams model to unidirectional nonlinear wave equations consisting of a general nonlinear flux function $f(u)$ and a general linear dispersion relation $Omega(k)$. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling waves wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of general $f(u)$ and $Omega(k)$ establishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill-Whitham criterion for modulational instability.



قيم البحث

اقرأ أيضاً

190 - A.M. Kamchatnov 2015
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained for each case. The essential difference between them is illustrated by an example of so-called `generalized Korteweg-de Vries equation. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.
The multiphase Whitham modulation equations with $N$ phases have $2N$ characteristics which may be of hyperbolic or elliptic type. In this paper a nonlinear theory is developed for coalescence, where two characteristics change from hyperbolic to elli ptic via collision. Firstly, a linear theory develops the structure of colliding characteristics involving the topological sign of characteristics and multiple Jordan chains, and secondly a nonlinear modulation theory is developed for transitions. The nonlinear theory shows that coalescing characteristics morph the Whitham equations into an asymptotically valid geometric form of the two-way Boussinesq equation. That is, coalescing characteristics generate dispersion, nonlinearity and complex wave fields. For illustration, the theory is applied to coalescing characteristics associated with the modulation of two-phase travelling-wave solutions of coupled nonlinear Schrodinger equations, highlighting how collisions can be identified and the relevant dispersive dynamics constructed.
The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modula ted periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.
It is proved that modulation in time and space of periodic wave trains, of the defocussing nonlinear Schrodinger equation, can be approximated by solutions of the Whitham modulation equations, in the hyperbolic case, on a natural time scale. The erro r estimates are based on existence, uniqueness, and energy arguments, in Sobolev spaces on the real line. An essential part of the proof is the inclusion of higher-order corrections to Whitham theory, and concomitant higher-order energy estimates.
The nonlinear stage of modulational instability in optical fibers induced by a wide and easily accessible class of localized perturbations is studied using the nonlinear Schrodinger equation. It is showed that the development of associated spatio-tem poral patterns is strongly affected by the shape and the parameters of the perturbation. Different scenarios are presented that involve an auto-modulation developing in a characteristic wedge, possibly coexisting with breathers which lie inside or outside the wedge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا