ﻻ يوجد ملخص باللغة العربية
Silver nanoparticles dispersed on the surface of an inverted GaN LED were found to plasmonically enhance the near-bandedge emission. The resonant surface plasmon coupling led to a significant enhancement in the exciton decay rate and the ensemble of nanoparticles provided a mechanism to scatter the coupled energy as free space radiation. The inverted LED structure employed a tunnel junction to avoid the standard thick p+ GaN current spreading contact layer. In contrast to a standard design, the top contact was a thin n++ AlGaN layer, which brought the quantum well into the fringing field of the silver nanoparticles. This proximity allowed the excitons induced within the quantum well to couple to the surface plasmons, which in turn led to the enhanced band edge emission from the LED.
We report direct evidence of enhanced spontaneous emission in a photonic crystal (PhC) light-emitting diode. The device consists of p-i-n heterojunction embedded in a suspended membrane, comprising a layer of self-assembled quantum dots. Current is i
Single-photon sources are essential building blocks in quantum photonic networks, where quantum-mechanical properties of photons are utilised to achieve quantum technologies such as quantum cryptography and quantum computing. Most conventional solid-
A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal m
Artificial lighting is a widespread technology which consumes large amounts of energy. Triplet-triplet annihilation photochemical upconversion is a method of converting light to a higher frequency. Here, we show theoretically that photochemical upcon
Recently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucida