ﻻ يوجد ملخص باللغة العربية
Odd-spin glueballs in the dynamical AdS/QCD model are scrutinized, in the paradigm of the configurational entropy (CE). Configurational-entropic Regge trajectories, that relate the CE underlying odd-spin glueballs to their mass spectra and spin, are then engendered. They predict the mass spectra of odd-spin glueballs, besides pointing towards the configurational stability of odd-spin glueball resonances. The exponential modified dilaton with logarithmic anomalous dimensions comprises the most suitable choice to derive the mass spectra of odd-spin glueballs, compatible to lattice QCD. It is then used in a hybrid paradigm that takes both lattice QCD and the AdS/QCD correspondence into account.
Based on gauge-gravity duality, by using holographic entanglement entropy, we have done a phenomenological study to probe confinement-deconfinement phase transition in the QCD-like gauge theory. Our outcomes are in perfect agreement with the expected
The meson family of $eta$ pseudoscalars is studied in the context of the AdS/QCD correspondence and the differential configurational entropy (DCE). For it, two forms of configurational-entropic Regge-like trajectories are engendered, relating the $et
The soft wall AdS/QCD holographic model provides simple estimates for the spectra of light mesons and glueballs satisfying linear Regge trajectories. It is also an interesting tool to represent the confinement/deconfinement transition of a gauge theo
The mass spectra of isovector $Upsilon$, $psi$, $phi$, and $omega$ meson resonances are investigated, in the AdS/QCD and information entropy setups. The differential configurational entropy is employed to obtain the mass spectra of radial $S$-wave re
We propose a deep learning method to build an AdS/QCD model from the data of hadron spectra. A major problem of generic AdS/QCD models is that a large ambiguity is allowed for the bulk gravity metric with which QCD observables are holographically cal