ﻻ يوجد ملخص باللغة العربية
Black hole binaries formed dynamically in globular clusters are believed to be one of the main sources of gravitational waves in the Universe. Here, we use our new population synthesis code, cBHBd, to determine the redshift evolution of the merger rate density and masses of black hole binaries formed in globular clusters. We simulate $sim 2$ million models to explore the parameter space that is relevant to real clusters and over all mass scales. We show that when uncertainties on the initial cluster mass function and density are properly taken into account, they become the two dominant factors in setting the theoretical error bars on merger rates. Other model parameters (e.g., natal kicks, black hole masses, metallicity) have virtually no effect on the local merger rate density, although they affect the masses of the merging black holes. Modelling the merger rate density as a function of redshift as $R(z)=R_0(1+z)^kappa$ at $z<2$, and marginalizing over uncertainties, we find: $R_0=7.2^{+21.5}_{-5.5}{rm Gpc^{-3}yr^{-1}}$ and $kappa=1.6^{+0.4}_{-0.6}$ ($90%$ credibility). The rate parameters for binaries that merge inside the clusters are ${R}_{rm 0,in}=1.6^{+1.9}_{-1.0}{rm Gpc^{-3}yr^{-1}}$ and $kappa_{rm in}=2.3^{+1.3}_{-1.0}$; $sim 20%$ of these form as the result of a gravitational-wave capture, implying that eccentric mergers from globular clusters contribute $lesssim 0.4 rm Gpc^{-3}yr^{-1}$ to the local rate. A comparison to the merger rate reported by LIGO-Virgo shows that a scenario in which most of the detected black hole mergers are formed in globular clusters is consistent with current constraints, and requires initial cluster half-mass densities $gtrsim 10^4 M_odot rm pc^{-3}$. Such models also reproduce the inferred primary black hole mass distribution for masses $13-30 M_odot$, but under-predict the data outside this range.
Several astrophysical scenarios have been proposed to explain the origin of the population of binary black hole (BBH) mergers detected in gravitational waves (GWs) by the LIGO/Virgo Collaboration. Among them, BBH mergers assembled dynamically in youn
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we
As a powerful source of gravitational waves (GW), a supermassive black hole (SMBH) merger may be accompanied by a relativistic jet that leads to detectable electromagnetic (EM) emission. We model the propagation of post-merger jets inside a pre-merge
We consider gravitational radiation and electromagnetic radiation from point mass binary with electric charges in a Keplerian orbit, and calculate the merger rate distribution of primordial black hole binaries with charges and a general mass function
The properties of primordial curvature perturbations on small scales are still unknown while those on large scales have been well probed by the observations of the cosmic microwave background anisotropies and the large scale structure. In this paper,