ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed Characterization of Heartbeat Stars and their Tidally Excited Oscillations

77   0   0.0 ( 0 )
 نشر من قبل Shelley Cheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heartbeat stars are a class of eccentric binary stars with short-period orbits and characteristic heartbeat signals in their light curves at periastron, caused primarily by tidal distortion. In many heartbeat stars, tidally excited oscillations can be observed throughout the orbit, with frequencies at exact integer multiples of the orbital frequency. Here, we characterize the tidally excited oscillations in the heartbeat stars KIC 6117415, KIC 11494130, and KIC 5790807. Using Kepler light curves and radial velocity measurements, we first model the heartbeat stars using the binary modeling software ELLC, including gravity darkening, limb darkening, Doppler boosting, and reflection. We then conduct a frequency analysis to determine the amplitudes and frequencies of the tidally excited oscillations. Finally, we apply tidal theories to stellar structure models of each system to determine whether chance resonances can be responsible for the observed tidally excited oscillations, or whether a resonance locking process is at work. We find that resonance locking is likely occurring in KIC 11494130, but not in KIC 6117415 or KIC 5790807.



قيم البحث

اقرأ أيضاً

We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. Time-dependent line broadening and the radial velocity signal during transit are both investigated as methods to provide further insight into the nature of the stellar oscillations. The photometric signal is predicted to be proportional to the inverse square of the orbital period, $P^{-2}$, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to $ P^{-1}$, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to $P^{-3}$. The prospects for detecting these oscillations and the implications for the detection and characterisation of planets are discussed.
We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (~1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes ex cited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayal telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller et al., 2017) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting ne ar orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 21 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 d and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity - period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
Heartbeat stars are eccentric binaries exhibiting characteristic shape of brightness changes during periastron passage caused by tidal distortion of the components. Variable tidal potential can drive tidally excited oscillations (TEOs), which are usu ally gravity modes. Studies of heartbeat stars and TEOs open a new possibility to probe interiors of massive stars. There are only a few massive (masses of components $gtrsim 2 $M$_odot$) systems of this type known. Using TESS data from the first 16 sectors, we searched for new massive heartbeat stars and TEOs using a sample of over 300 eccentric spectroscopic binaries. We analysed TESS 2-min and 30-min cadence data. Then, we fitted Kumars analytical model to the light curves of stars showing heartbeats and performed times-series analysis of the residuals searching for TEOs and periodic intrinsic variability. We found 20 massive heartbeat systems, of which seven show TEOs. The TEOs occur at harmonics of orbital frequencies in the range between 3 and 36, with the median value equal to 9, lower than those in known Kepler systems with TEOs. The most massive system in this sample is the quadruple star HD 5980, a member of Small Magellanic Cloud. With the total mass of $sim$150 M$_{odot}$ it is the most massive system showing a heartbeat. Six stars in the sample of the new heartbeat stars are eclipsing. Comparison of the parameters derived from fitting Kumars model and from light-curve modelling shows that Kumars model does not provide reliable parameters. Finally, intrinsic pulsations of $beta$ Cep, SPB, $delta$ Sct, and $gamma$ Dor-type were found in nine heartbeat systems. This opens an interesting possibility of studies of pulsation-binarity interaction and the co-existence of forced and self-excited oscillations.
Pandora is a SmallSat mission designed to study the atmospheres of exoplanets, and was selected as part of NASAs Astrophysics Pioneers Program. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of planetary atmospheres in the coming decade. Stellar brightness variations due to star spots, however, can impact these measurements and contaminate the observed spectra. Pandoras goal is to disentangle star and planet signals in transmission spectra to reliably determine exoplanet atmosphere compositions. Pandora will collect long-duration photometric observations with a visible-light channel and simultaneous spectra with a near-IR channel. The broad-wavelength coverage will provide constraints on the spot and faculae covering fractions of low-mass exoplanet host stars and the impact of these active regions on exoplanetary transmission spectra. Pandora will subsequently identify exoplanets with hydrogen- or water-dominated atmospheres, and robustly determine which planets are covered by clouds and hazes. Pandora will observe at least 20 exoplanets with sizes ranging from Earth-size to Jupiter-size and host stars spanning mid-K to late-M spectral types. The project is made possible by leveraging investments in other projects, including an all-aluminum 0.45-meter Cassegrain telescope design, and a NIR sensor chip assembly from the James Webb Space Telescope. The mission will last five years from initial formulation to closeout, with one-year of science operations. Launch is planned for the mid-2020s as a secondary payload in Sun-synchronous low-Earth orbit. By design, Pandora has a diverse team, with over half of the mission leadership roles filled by early career scientists and engineers, demonstrating the high value of SmallSats for developing the next generation of space mission leaders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا