ترغب بنشر مسار تعليمي؟ اضغط هنا

The fully developed remnant of a neutrino-driven supernova: Evolution of ejecta structure and asymmetries in SNR Cassiopeia A

52   0   0.0 ( 0 )
 نشر من قبل Salvatore Orlando
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Abridged. We aim at exploring to which extent the remnant keeps memory of the asymmetries that develop stochastically in the neutrino-heating layer due to hydrodynamic instabilities (e.g., convective overturn and the standing accretion shock instability) during the first second after core bounce. We coupled a 3D HD model of a neutrino-driven SN explosion with 3D MHD/HD simulations of the remnant formation. The simulations cover 2000 years of expansion and include all physical processes relevant to describe the complexities in the SN evolution and the subsequent interaction of the stellar debris with the wind of the progenitor star. The interaction of large-scale asymmetries left from the earliest phases of the explosion with the reverse shock produces, at the age of $approx 350$~years, an ejecta structure and a remnant morphology which are remarkably similar to those observed in Cas A. Small-scale structures in the large-scale Fe-rich plumes created during the initial stages of the SN, combined with HD instabilities that develop after the passage of the reverse shock, naturally produce a pattern of ring- and crown-like structures of shocked ejecta. The consequence is a spatial inversion of the ejecta layers with Si-rich ejecta being physically interior to Fe-rich ejecta. The full-fledged remnant shows voids and cavities in the innermost unshocked ejecta resulting from the expansion of Fe-rich plumes and their inflation due to the decay of radioactive species. The asymmetric distributions of $^{44}$Ti and $^{56}$Fe and their abundance ratio are both compatible with those inferred from high-energy observations of Chandra and NuSTAR. The main asymmetries observed in the ejecta distribution of Cas A can be explained by the interaction of the reverse shock with the large-scale asymmetries that developed from stochastic processes that originate during the first seconds of the SN blast.

قيم البحث

اقرأ أيضاً

107 - Gregory S. Vance 2020
Mixing above the proto-neutron star is believed to play an important role in the supernova engine, and this mixing results in a supernova explosion with asymmetries. Elements produced in the innermost ejecta, e.g., ${}^{56}$Ni and ${}^{44}$Ti, provid e a clean probe of this engine. The production of ${}^{44}$Ti is particularly sensitive to the exact production pathway and, by understanding the available pathways, we can use ${}^{44}$Ti to probe the supernova engine. Using thermodynamic trajectories from a three-dimensional supernova explosion model, we review the production of these elements and the structures expected to form under the convective-engine paradigm behind supernovae. We compare our results to recent X-ray and $gamma$-ray observations of the Cassiopeia A supernova remnant.
We report the results of broadband (0.95--2.46 $mu$m) near-infrared spectroscopic observations of the Cassiopeia A supernova remnant. Using a clump-finding algorithm in two-dimensional dispersed images, we identify 63 knots from eight slit positions and derive their spectroscopic properties. All of the knots emit [Fe II] lines together with other ionic forbidden lines of heavy elements, and some of them also emit H and He lines. We identify 46 emission line features in total from the 63 knots and measure their fluxes and radial velocities. The results of our analyses of the emission line features based on principal component analysis show that the knots can be classified into three groups: (1) He-rich, (2) S-rich, and (3) Fe-rich knots. The He-rich knots have relatively small, $lesssim 200~{rm km~s}^{-1}$, line-of-sight speeds and radiate strong He I and [Fe II] lines resembling closely optical quasi-stationary flocculi of circumstellar medium, while the S-rich knots show strong lines from O-burning material with large radial velocities up to $sim 2000~{rm km~s}^{-1}$ indicating that they are supernova ejecta material known as fast-moving knots. The Fe-rich knots also have large radial velocities but show no lines from O-burning material. We discuss the origin of the Fe-rich knots and conclude that they are most likely pure Fe ejecta synthesized in the innermost region during the supernova explosion. The comparison of [Fe II] images with other waveband images shows that these dense Fe ejecta are mainly distributed along the southwestern shell just outside the unshocked $^{44}$Ti in the interior, supporting the presence of unshocked Fe associated with $^{44}$Ti.
We report the likely detection of near-infrared 2.29 $mu$m first overtone Carbon Monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A). The continuum-subtracted CO filter map reveals CO knots within the ejecta-rich reverse shoc k. We compare the first overtone CO emission with that found in the well-studied supernova, SN 1987A and find $sim$30 times less CO in Cas A. The presence of CO suggests that molecule mixing is small in the SN ejecta and that astrochemical processes and molecule formation may continue at least ~300 years after the initial explosion.
Phosphorus ($^{31}$P), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here we report on near-infrared spectroscopic observations of the yo ung SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ($^{56}$Fe) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion.
The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of how these catastrophic explosions proceed remain uncertain due, in part, to limited observational constraints on various processes that can introduce asymmetries deep inside the star. Here we present near-infrared observations of the young Milky Way supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior, unshocked ejecta. The remnants interior has a bubble-like morphology that smoothly connects to and helps explain the multi-ringed structures seen in the remnants bright reverse shocked main shell of expanding debris. This internal structure may have originated from turbulent mixing processes that encouraged the development of outwardly expanding plumes of radioactive 56Ni-rich ejecta. If this is true, substantial amounts of its decay product, 56Fe, may still reside in these interior cavities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا