ﻻ يوجد ملخص باللغة العربية
We describe the ADAPT system for the 2020 IWPT Shared Task on parsing enhanced Universal Dependencies in 17 languages. We implement a pipeline approach using UDPipe and UDPipe-future to provide initial levels of annotation. The enhanced dependency graph is either produced by a graph-based semantic dependency parser or is built from the basic tree using a small set of heuristics. Our results show that, for the majority of languages, a semantic dependency parser can be successfully applied to the task of parsing enhanced dependencies. Unfortunately, we did not ensure a connected graph as part of our pipeline approach and our competition submission relied on a last-minute fix to pass the validation script which harmed our official evaluation scores significantly. Our submission ranked eighth in the official evaluation with a macro-averaged coarse ELAS F1 of 67.23 and a treebank average of 67.49. We later implemented our own graph-connecting fix which resulted in a score of 79.53 (language average) or 79.76 (treebank average), which would have placed fourth in the competition evaluation.
We describe the DCU-EPFL submission to the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies. The task involves parsing Enhanced UD graphs, which are an extension of the basic dependency trees designed to be more facilitative towa
Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the worlds languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learn
A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on
The quality of machine translation systems has dramatically improved over the last decade, and as a result, evaluation has become an increasingly challenging problem. This paper describes our contribution to the WMT 2020 Metrics Shared Task, the main
We present our system for the CLIN29 shared task on cross-genre gender detection for Dutch. We experimented with a multitude of neural models (CNN, RNN, LSTM, etc.), more traditional models (SVM, RF, LogReg, etc.), different feature sets as well as d