ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative gauge invariant scalar fluctuations of the metric in Higgs inflation from complex geometrical scalar-tensor theory of gravity

82   0   0.0 ( 0 )
 نشر من قبل Jose Edgar Madriz Aguilar Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter we investigate gauge invariant scalar fluctuations of the metric in a non-perturbative formalism for a Higgs inflationary model recently introduced in the framework of a geometrical scalar-tensor theory of gravity. In this scenario the Higgs inflaton field has its origin in the Weyl scalar field of the background geometry. We found a nearly scale invariance of the power spectrum for linear scalar fluctuations of the metric. For certain parameters of the model we obtain values for the scalar spectral index $n_s$ and the scalar to tensor ratio $r$ that fit well with the Planck 2018 results. Besides we show that in this model the trans-planckian problem can be avoided.

قيم البحث

اقرأ أيضاً

We investigate gauge invariant scalar fluctuations of the metric during inflation in a non-perturbative formalism in the framework of a recently introduced scalar-tensor theory of gravity formulated on a Weyl-Integrable geometry. We found that the We yl scalar field can play the role of the inflaton field in this theory. As an application we study the case of a power law inflation. In this case the quasi-scale invariance of the spectrum for scalar fluctuations of the metric is achieved for determined values of the $omega$ parameter of the scalar-tensor theory. In our formalism the physical inflaton field has a geometrical origin.
We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are the dominant duri ng the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion.
A class of scalar-tensor theories (STT) including a non-metricity that unifies metric, Palatini and hybrid metric-Palatini gravitational actions with non-minimal interaction is proposed and investigated from the point of view of their consistency wit h generalized conformal transformations. It is shown that every such theory can be represented on-shell by a purely metric STT possessing the same solutions for a metric and a scalar field. A set of generalized invariants is also proposed. This extends the formalism previously introduced in cite{kozak2019}. We then apply the formalism to Starobinsky model, write down the Friedmann equations for three possible cases: metric, Palatini and hybrid metric-Palatini, and compare some inflationary observables.
73 - Valerio Faraoni 2021
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective diss ipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.
Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: $bar{G}_{AB}=0$, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space time matter inflation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا