ﻻ يوجد ملخص باللغة العربية
Unidirectional in-plane structural anisotropy in Rhenium-based transition metal dichalcogenides (TMDs) introduces a new class of 2-D materials, exhibiting anisotropic optical properties. In this work, we perform temperature dependent, polarization-resolved photoluminescence and reflectance measurements on several-layer ReS$_{2}$. We discover two additional excitonic resonances (X$_{3}$ and X$_{4}$), which can be attributed to splitting of spin degenerate states. Strong in-plane oscillator strength of exciton species X$_{1}$ and X$_{2}$ are accompanied by weaker counterparts X$_{3}$ and X$_{4}$ with similar polarization orientations. The in-plane anisotropic dielectric function has been obtained for ReS$_{2}$ which is essential for engineering light matter coupling for polarization sensitive optoelectronic devices. Furthermore, our temperature dependent study revealed the existence of low-lying momentum-forbidden dark states causing an anomalous PL intensity variation at 30 K, which has been elucidated using a rate equation model involving phonon scattering from these states. Our findings of the additional excitonic features and the momentum-dark states can shed light on the true nature of the electronic band structure of ReS$_{2}$.
We show that new low-energy photoluminescence (PL) bands can be created in semiconducting single-walled carbon nanotubes by intense pulsed excitation. The new bands are attributed to PL from different nominally dark excitons that are brightened due t
Twist-engineering of the electronic structure of van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the
The reduced dielectric screening in atomically thin transition metal dichalcogenides allows to study the hydrogen-like series of higher exciton states in optical spectra even at room temperature. The width of excitonic peaks provides information abou
ReS$_2$ has recently emerged as a new member in the rapidly growing family of two-dimensional materials. Unlike MoS$_2$ or WSe$_2$, the optical and electrical properties of ReS$_2$ are not isotropic due to the reduced symmetry of the crystal. Here, w
Two-dimensional quantum spin Hall (QSH) insulators are a promising material class for spintronic applications based on dissipationless topologically-protected spin currents in their edges. Yet, they have not lived up to their technological potential,