ﻻ يوجد ملخص باللغة العربية
High levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the liquid water habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. We present new HST and Chandra observations of Barnards Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnards star, we observe two FUV ($delta_{130}$ $approx$ 5000s; $E_{130}$ $approx$ 10$^{29.5}$ erg each) and one X-ray ($E_{X}$ $approx$ 10$^{29.2}$ erg) flares, and estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of $sim$ 25%. A 5 A - 10 $mu$m SED of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone ($r_{HZ}$ $sim$ 0.1 AU). Both thermal and non-thermal escape modeling indicate (1) the $quiescent$ stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the $flare$ environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of $approx$ 87 Earth atmospheres Gyr$^{-1}$ through thermal processes and $approx$ 3 Earth atmospheres Gyr$^{-1}$ through ion loss processes, respectively. These results suggest that if rocky planet atmospheres can survive the initial $sim$ 5 Gyr of high stellar activity, or if a second generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars.
In the last few years many exoplanets in the habitable zone (HZ) of M-dwarfs have been discovered, but the X-ray/UV activity of cool stars is very different from that of our Sun. The high-energy radiation environment influences the habitability, play
We present radial velocity (RV) measurements of our sample of 40 M dwarfs from our planet search programme with VLT+UVES begun in 2000. Although with our RV precision down to 2 - 2.5 m/s and timebase line of up to 7 years, we are capable of finding p
The discovery of many planets using the Kepler telescope includes ten planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable-zone (BHZ). We constrain the level
M dwarf stars are high-priority targets for searches for Earth-size and potentially Earth-like planets, but their planetary systems may form and evolve in very different circumstellar environments than those of solar-type stars. To explore the evolut
We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with teff{} $= 3980^{+31}_{-32}