ترغب بنشر مسار تعليمي؟ اضغط هنا

The High-Energy Radiation Environment Around a 10 Gyr M Dwarf: Habitable at Last?

78   0   0.0 ( 0 )
 نشر من قبل Kevin France
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the liquid water habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. We present new HST and Chandra observations of Barnards Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnards star, we observe two FUV ($delta_{130}$ $approx$ 5000s; $E_{130}$ $approx$ 10$^{29.5}$ erg each) and one X-ray ($E_{X}$ $approx$ 10$^{29.2}$ erg) flares, and estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of $sim$ 25%. A 5 A - 10 $mu$m SED of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone ($r_{HZ}$ $sim$ 0.1 AU). Both thermal and non-thermal escape modeling indicate (1) the $quiescent$ stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the $flare$ environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of $approx$ 87 Earth atmospheres Gyr$^{-1}$ through thermal processes and $approx$ 3 Earth atmospheres Gyr$^{-1}$ through ion loss processes, respectively. These results suggest that if rocky planet atmospheres can survive the initial $sim$ 5 Gyr of high stellar activity, or if a second generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars.



قيم البحث

اقرأ أيضاً

In the last few years many exoplanets in the habitable zone (HZ) of M-dwarfs have been discovered, but the X-ray/UV activity of cool stars is very different from that of our Sun. The high-energy radiation environment influences the habitability, play s a crucial role for abiogenesis, and impacts planetary atmospheres. LHS 1140b is a super-Earth-size planet orbiting in the HZ of LHS 1140, an M4.5 dwarf at ~15 parsecs. We present the results of a Swift X-ray/UV observing campaign. We characterize for the first time the X-ray/UV radiation environment of LHS 1140b. We measure the variability of the near ultraviolet (NUV) flux and estimate the far ultraviolet (FUV) flux with a correlation between FUV and NUV flux of a sample of low-mass stars in the GALEX archive. We highlight the presence of a dominating X-ray source close to the J2000 coordinates of LHS 1140, characterize its spectrum, and derive an X-ray flux upper limit for LHS 1140. We find that this contaminant source could have influenced the previously estimated spectral energy distribution. No significant variation of the NUV flux of LHS 1140 is found over 3 months, and we do not observe any flare during the 38 ks on the target. LHS 1140 is in the 25th percentile of least variable M4-M5 dwarfs of the GALEX sample. Analyzing the UV flux experienced by the HZ planet LHS 1140b, we find that outside the atmosphere it receives a NUV flux <2% with respect to that of the present-day Earth, while the FUV/NUV ratio is ~100-200 times higher. This represents a lower limit to the true FUV/NUV ratio since the GALEX FUV band does not include Lyman-alpha, which dominates the FUV output of low-mass stars. This is a warning for future searches for biomarkers, which must take into account this high ratio. The relatively low level and stability of UV flux experienced by LHS 1140b should be favorable for its present-day habitability.
217 - M. Zechmeister MPIA 2009
We present radial velocity (RV) measurements of our sample of 40 M dwarfs from our planet search programme with VLT+UVES begun in 2000. Although with our RV precision down to 2 - 2.5 m/s and timebase line of up to 7 years, we are capable of finding p lanets of a few Earth masses in the close-in habitable zones of M dwarfs, there is no detection of a planetary companion. To demonstrate this we present mass detection limits allowing us to exclude Jupiter-mass planets up to 1 AU for most of our sample stars. We identified 6 M dwarfs that host a brown dwarf or low-mass stellar companion. With the exception of these, all other sample stars show low RV variability with an rms < 20 m/s. Some high proper motion stars exhibit a linear RV trend consistent with their secular acceleration. Furthermore, we examine our data sets for a possible correlation between RVs and stellar activity as seen in variations of the Halpha line strength. For Barnards star we found a significant anticorrelation, but most of the sample stars do not show such a correlation.
The discovery of many planets using the Kepler telescope includes ten planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable-zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47 making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparametrized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.
M dwarf stars are high-priority targets for searches for Earth-size and potentially Earth-like planets, but their planetary systems may form and evolve in very different circumstellar environments than those of solar-type stars. To explore the evolut ion of these systems, we obtained transit spectroscopy and photometry of the Neptune-size planet orbiting the ~650 Myr-old Hyades M dwarf K2-25. An analysis of the variation in spectral line shape induced by the Doppler shadow of the planet indicate that the planets orbit is closely aligned with the stellar equator (lambda = -1.7+5.8/-3.7 deg), and that an eccentric orbit found by previous work could arise from perturbations by another planet on a co-planar orbit. We detect no significant variation in the depth of the He I line at 1083 nm during transit. A model of atmospheric escape as a isothermal Parker wind with a solar composition show that this non-detection is not constraining compared to escape rate predictions of ~0.1 Mearth/Gyr; at such rates, at least several Gyr are required for a Neptune-like planet to evolve into a rocky super-Earth.
We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with teff{} $= 3980^{+31}_{-32} $ K, which hosts a transiting super Neptune at an orbital period of $sim$ 3.49 days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of $5.05_{-0.17}^{+0.16}$ R$_{oplus}$, mass $26.78_{-5.13}^{+5.43}$ M$_{oplus}$ and eccentricity $0.057_{-0.039}^{+0.054}$. We estimate the stellar properties, and perform a search for He 10830 AA absorption during the transit of this planet and claim a null detection with an upper limit of 1.1$%$ with 90% confidence. A deeper level of He 10830 AA ~ absorption has been detected in the planet atmosphere of GJ 3470b, a comparable gaseous planet. TOI-1728b is the largest super Neptune -- the intermediate subclass of planets between Neptune and the more massive gas-giant planets -- discovered around an M dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable datapoint in the M-dwarf exoplanet mass-radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M-dwarfs. With a low bulk density of $1.14_{-0.24}^{+0.26}$ g/cm$^3$, and orbiting a bright host star (J $sim 9.6$, V $sim 12.4$), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا