ﻻ يوجد ملخص باللغة العربية
The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully designed with respect to the city infrastructure and utilization of resources. Recently, the idea of smart environment, which takes advantage of the infrastructure for better performance of wireless networks, has been proposed. This idea is aligned with the recent advances in design of reconfigurable intelligent surfaces (RISs), which are planar structures with the capability to reflect impinging electromagnetic waves toward preferred directions. Thus, RISs are expected to provide the necessary flexibility for the design of the smart communication environment, which can be optimally shaped to enable cost- and energy-efficient signal transmissions where needed. Upon deployment of RISs, the ecosystem of the Smart Cities would become even more controllable and adaptable, which would subsequently ease the implementation of future communication networks in urban areas and boost the interconnection among private households and public services. In this paper, we describe our vision of the application of RISs in future Smart Cities. In particular, the research challenges and opportunities are addressed. The contribution paves the road to a systematic design of RIS-assisted communication networks for Smart Cities in the years to come.
A reconfigurable intelligent surface (RIS) is a metamaterial that can be integrated into walls and influence the propagation of electromagnetic waves. This, typically passive radio frequency (RF) technology is emerging for indoor and outdoor use with
Reconfigurable intelligent surfaces (RISs), also known as intelligent reflecting surfaces (IRSs), or large intelligent surfaces (LISs), have received significant attention for their potential to enhance the capacity and coverage of wireless networks
Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs), are regarded as one of the most promising and revolutionizing techniques for enhancing the spectrum and/or energy efficiency of wireless systems. These devices are
Recent advances in the fabrication and experimentation of Reconfigurable Intelligent Surfaces (RISs) have motivated the concept of the smart radio environment, according to which the propagation of information-bearing waveforms in the wireless medium
Reconfigurable intelligent surface (RIS) has become a promising technology for enhancing the reliability of wireless communications, which is capable of reflecting the desired signals through appropriate phase shifts. However, the intended signals th