ﻻ يوجد ملخص باللغة العربية
We report an {it ab initio} simulation study of changes in structural and dynamic properties of liquid Si at 7 pressures ranging from 10.2 GPa to 24.3 GPa along the isothermal line 1150~K, which is above the minimum of the melting line. The increase of pressure from 10.2 GPa to 16 GPa causes strong reduction in the tetrahedral ordering of the most close neighbors. The diffusion coefficient shows a linear decay vs drop in atomic volume, that agrees with theoretical prediction for simple liquid metals, thus not showing any feature at the pressures corresponding to the different crystal phase boundaries. The Fourier-spectra of velocity autocorrelation function shows two-peak structure at pressures 20 GPa and higher. These characteristic frequencies correspond well to the peak frequencies of the transverse current spectral function in the second pseudo-Brillouin zone. Two almost flat branches of short-wavelength transverse modes were observed for all the studied pressures. We discuss the pressure evolution of characteristic frequencies in the longitudinal and transverse branches of collective modes.
The structural and dynamic properties of silica melts under high pressure are studied using molecular dynamics (MD) computer simulation. The interactions between the ions are modeled by a pairwise-additive potential, the so-called CHIK potential, tha
{em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant
We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb and Dy) and synchrotron X-ray diffraction (for A = Pr, Sm, Eu, and Dy). In all cases, a structural and insulator-to-metal t
Melting of orthorhombic boron silicide B6Si has been studied at pressures up to 8 GPa using in situ electrical resistivity measurements and quenching. It has been found that in the 2.6-7.7 GPa range B6Si melts congruently, and the melting curve exhib
Neutron scattering, a.c. magnetic susceptibility and specific heat studies have been carried out on polycrystalline Dy2Zr2O7. Unlike the pyrochlore spin ice Dy2Ti2O7, Dy2Zr2O7 crystallizes into the fluorite structure and the magnetic Dy3+ moments ran