ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and dynamic features of liquid Si under high pressure above the melting line minimum

64   0   0.0 ( 0 )
 نشر من قبل Taras Bryk
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an {it ab initio} simulation study of changes in structural and dynamic properties of liquid Si at 7 pressures ranging from 10.2 GPa to 24.3 GPa along the isothermal line 1150~K, which is above the minimum of the melting line. The increase of pressure from 10.2 GPa to 16 GPa causes strong reduction in the tetrahedral ordering of the most close neighbors. The diffusion coefficient shows a linear decay vs drop in atomic volume, that agrees with theoretical prediction for simple liquid metals, thus not showing any feature at the pressures corresponding to the different crystal phase boundaries. The Fourier-spectra of velocity autocorrelation function shows two-peak structure at pressures 20 GPa and higher. These characteristic frequencies correspond well to the peak frequencies of the transverse current spectral function in the second pseudo-Brillouin zone. Two almost flat branches of short-wavelength transverse modes were observed for all the studied pressures. We discuss the pressure evolution of characteristic frequencies in the longitudinal and transverse branches of collective modes.


قيم البحث

اقرأ أيضاً

156 - Juergen Horbach 2008
The structural and dynamic properties of silica melts under high pressure are studied using molecular dynamics (MD) computer simulation. The interactions between the ions are modeled by a pairwise-additive potential, the so-called CHIK potential, tha t has been recently proposed by Carre et al. The experimental equation of state is well-reproduced by the CHIK model. With increasing pressure (density), the structure changes from a tetrahedral network to a network containing a high number of five- and six-fold Si-O coordination. In the partial static structure factors, this change of the structure with increasing density is reflected by a shift of the first sharp diffraction peak towards higher wavenumbers q, eventually merging with the main peak at densities around 4.2 g/cm^3. The self-diffusion constants as a function of pressure show the experimentally-known maximum, occurring around a pressure of about 20 GPa.
{em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant to the Earths core. The {em ab initio} free energy is obtained by using thermodynamic integration to calculate the change of free energy on going from a simple reference system to the {em ab initio} system, with thermal averages computed by {em ab initio} molecular dynamics simulation. The reference system consists of the inverse-power pair-potential model used in previous work. The liquid-state free energy is combined with the free energy of hexagonal close packed Fe calculated earlier using identical {em ab initio} techniques to obtain the melting curve and volume and entropy of melting. Comparisons of the calculated melting properties with experimental measurement and with other recent {em ab initio} predictions are presented. Experiment-theory comparisons are also presented for the pressures at which the solid and liquid Hugoniot curves cross the melting line, and the sound speed and Gr{u}neisen parameter along the Hugoniot. Additional comparisons are made with a commonly used equation of state for high-pressure/high-temperature Fe based on experimental data.
We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb and Dy) and synchrotron X-ray diffraction (for A = Pr, Sm, Eu, and Dy). In all cases, a structural and insulator-to-metal t ransition was evidenced, with a critical pressure that depends on the A-cation size. We analyze the compression mechanisms at work in the different manganites via the pressure dependence of the lattice parameters, the shear strain in the a-c plane, and the Raman bands associated with out-of-phase MnO6 rotations and in-plane O2 symmetric stretching modes. Our data show a crossover across the rare-earth series between two different kinds of behavior. For the smallest A-cations, the compression is nearly isotropic in the ac plane, with presumably only very slight changes of tilt angles and Jahn-Teller distortion. As the radius of the A-cation increases, the pressure-induced reduction of Jahn-Teller distortion becomes more pronounced and increasingly significant as a compression mechanism, while the pressure-induced bending of octahedra chains becomes conversely less pronounced. We finally discuss our results in the light of the notion of chemical pressure, and show that the analogy with hydrostatic pressure works quite well for manganites with small A-cations but can be misleading with large A-cations.
Melting of orthorhombic boron silicide B6Si has been studied at pressures up to 8 GPa using in situ electrical resistivity measurements and quenching. It has been found that in the 2.6-7.7 GPa range B6Si melts congruently, and the melting curve exhib its negative slope of -31(2) K/GPa that points to a higher density of the melt as compared to the solid phase. At very high temperatures B6Si melt appears to be unstable and undergoes disproportionation into silicon and boron-rich silicides. The onset temperature of disproportionation strongly depends on pressure, and the corresponding low-temperature boundary exhibits negative slope of -92(3) K/GPa which is indicative of significant volume decrease in the course of B6Si melt decomposition.
Neutron scattering, a.c. magnetic susceptibility and specific heat studies have been carried out on polycrystalline Dy2Zr2O7. Unlike the pyrochlore spin ice Dy2Ti2O7, Dy2Zr2O7 crystallizes into the fluorite structure and the magnetic Dy3+ moments ran domly reside on the corner-sharing tetrahedral sublattice with non-magnetic Zr ions. Antiferromagnetic spin correlations develop below 10 K but remain dynamic down to 40 mK. These correlations extend over the length of two tetrahedra edges and grow to 6 nearest neighbors with the application of a 20 kOe magnetic field. No Paulings residual entropy was observed and by 8 K the full entropy expected for a two level system is released. We propose that the disorder melts the spin ice state seen in the chemically ordered Dy2Ti2O7 compound, but the spins remain dynamic in a disordered, liquid-like state and do not freeze into a glass-like state that one might intuitively expect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا