ترغب بنشر مسار تعليمي؟ اضغط هنا

Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network

221   0   0.0 ( 0 )
 نشر من قبل Tian Tian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Realizing a controllable network with multiple degrees of interaction is a challenge to physics and engineering. Here, we experimentally report an on-chip reconfigurable network based on nanoelectromechanical resonators with nearest-neighbor (NN) and next-nearest-neighbor (NNN) strong couplings. By applying different parametric voltages on the same on-chip device, we carry out perfect coherent transfer in NN and NNN coupled array networks. Moreover, the low-loss resonators ensure the desired evolution to achieve perfect transfer and the demonstration of the parity-dependent phase relation at transmission cycles. The realization of NNN couplings demonstrates the capability of engineering coherent coupling beyond a simple model of a NN coupled array of doubly clamped resonators. Our reconfigurable nanoelectromechanical network provides a highly tunable physical platform and offers the possibilities of investigating various interesting phenomena, such as topological transport, synchronization of networks, as well as metamaterials.

قيم البحث

اقرأ أيضاً

In this paper we propose a scheme for quasi-perfect state transfer in a network of dissipative harmonic oscillators. We consider ideal sender and receiver oscillators connected by a chain of nonideal transmitter oscillators coupled by nearest-neighbo r resonances. From the algebraic properties of the dynamical quantities describing the evolution of the network state, we derive a criterion, fixing the coupling strengths between all the oscillators, apart from their natural frequencies, enabling perfect state transfer in the particular case of ideal transmitter oscillators. Our criterion provides an easily manipulated formula enabling perfect state transfer in the special case where the network nonidealities are disregarded. By adjusting the common frequency of the sender and the receiver oscillators to be out of resonance with that of the transmitters, we demonstrate that the senders state tunnels to the receiver oscillator by virtually exciting the nonideal transmitter chain. This virtual process makes negligible the decay rate associated with the transmitter line on the expenses of delaying the time interval for the state transfer process. Apart from our analytical results, numerical computations are presented to illustrate our protocol.
188 - H. Jin , F. M. Liu , P. Xu 2014
Integrated quantum optics becomes a consequent tendency towards practical quantum information processing. Here, we report the on-chip generation and manipulation of photonic entanglement based on reconfigurable lithium niobate waveguide circuits. By introducing periodically poled structure into the waveguide interferometer, two individual photon-pair sources with controllable phase-shift are produced and cascaded by a quantum interference, resulting in a deterministically separated identical photon pair. The state is characterized by 92.9% visibility Hong-Ou-Mandel interference. Continuous morphing from two-photon separated state to bunched state is further demonstrated by on-chip control of electro-optic phase-shift. The photon flux reaches ~1.4*10^7 pairs nm-1 mW-1. Our work presents a scenario for on-chip engineering of different photon sources and paves a way to the fully integrated quantum technologies.
Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to program the photonic circuits that implements some desired logical operation. Here we demonstrate a reconfigurable controlled two-qubit operation on a chip using a multiwaveguide interferometer with a tunable phase shifter. We find excellent agreement between theory and experiment, with a 0.98 pm 0.02 average similarity between measured and ideal operations.
We theoretically study the conditions under which two laser fields can undergo Coherent Perfect Absorption (CPA) when shined on a single-mode bi-directional optical cavity coupled with two two- level quantum emitters (natural atoms, artificial atoms, quantum dots, qubits, etc.). In addition to being indirectly coupled through the cavity-mediated field, in our Tavis-Cummings model the two quantum emitters (QEs) are allowed to interact directly via the dipole-dipole interaction (DDI). Under the mean-field approximation and low-excitation assumption, in this work, we particularly focus on the impact of DDI on the existence of CPA in the presence of decoherence mechanisms (spontaneous emission from the QEs and the leakage of photons from the cavity walls). We also present a dressed-state analysis of the problem to discuss the underlying physics related to the allowed polariton state transitions in the Jaynes-Tavis-Cummings ladder. As a key result, we find that in the strong-coupling regime of cavity quantum electrodynamics, the strong DDI and the emitter-cavity detuning can act together to achieve the CPA at two laser frequencies tunable by the inter-atomic separation which are not possible to attain with a single QE in the presence of detuning. Our CPA results are potentially applicable in building quantum memories that are an essential component in long-distance quantum networking.
Although a complete picture of the full evolution of complex quantum systems would certainly be the most desirable goal, for particular Quantum Information Processing schemes such an analysis is not necessary. When quantum correlations between only s pecific elements of a many-body system are required for the performance of a protocol, a more distinguished and specialised investigation is helpful. Here, we provide a striking example with the achievement of perfect state transfer in a spin chain without state initialisation, whose realisation has been shown to be possible in virtue of the correlations set between the first and last spin of the transmission-chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا