ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmicflows-4: The Catalog of ~10000 Tully-Fisher Distances

121   0   0.0 ( 0 )
 نشر من قبل Ehsan Kourkchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the distances of 9792 spiral galaxies lying within 15,000 km/s using the relation between luminosity and rotation rate of spiral galaxies. The sample is dominantly, but not exclusively, drawn from galaxies detected in the course of the ALFALFA HI survey with the Arecibo Telescope. Relations between hi line widths and luminosity are calibrated at SDSS u, g, r, i, z bands and WISE W1 and W2 bands. By exploiting secondary parameters, particularly color indices, we address discrepancies between measured distances at different wave bands with unprecedented detail. We provide a catalog that includes reduced kinematic, photometric, and inclination parameters. We also describe a machine learning algorithm, based on the random forest technique that predicts the dust attenuation in spirals lacking infrared photometry. We determine a Hubble Constant value of H0 = 75.1+-0.2 (stat.), with potential systematics up to +-3 km/s/Mpc.

قيم البحث

اقرأ أيضاً

This paper involves a data release of the observational campaign: Cosmicflows with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the survey is presented. An additional ~ 400 galaxies from various other Spitzer surveys are also a nalyzed. CFS complements the Spitzer Survey of Stellar Structure in Galaxies, that provides photometry for an additional 2352 galaxies, by extending observations to low galactic latitudes (|b|<30 degrees). Among these galaxies are calibrators, selected in K band, of the Tully-Fisher relation. The addition of new calibrators demonstrate the robustness of the previously released calibration. Our estimate of the Hubble constant using supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc. Distance-derived radial peculiar velocities, for the 1935 galaxies with all the available parameters, will be incorporated into a new data release of the Cosmicflows project. The size of the previous catalog will be increased by 20%, including spatial regions close to the Zone of Avoidance.
In this study, we present an update of a compilation of line width measurements of neutral atomic hydrogen (HI) galaxy spectra at 21 cm wavelength. Our All Digital HI (ADHI) catalog consists of the previous release augmented with our new HI observati ons and an analysis of archival data. This study provides the required HI information to measure the distances of spiral galaxies through the application of the Tully-Fisher (TF) relation. We conducted observations at the Green Bank telescope (GBT) and reprocessed spectra obtained at the Nancay radiotelescope by the Nancay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) and Kinematics of the Local Universe (KLUN) collaborations and we analyzed the recently published full completion Arecibo Legacy Fast ALFA (ALFALFA) 100% survey in order to identify galaxies with good quality HI line width measurements. This paper adds new HI data adequate for TF use for 385 galaxies observed at GBT, 889 galaxies from archival Nancay spectra, and 1,515 rescaled Arecibo ALFALFA spectra. In total, this release adds 1,274 new good quality measurements to the ADHI catalog. Today, the ADHI database contains 18,874 galaxies, for which 15,433 have good quality data for TF use. The final goal is to compute accurate distances to spiral galaxies, which will be included in the next generation of peculiar velocities catalog: Cosmicflows-4.
75 - T. Shanks 2002
We first discuss why the uncomfortable fine-tuning of the parameters of the Lambda-CDM cosmological model provides continuing, strong motivation to investigate Hubbles Constant. Then we review evidence from the HST Key Project that there is a signifi cant scale error between raw Cepheid and Tully-Fisher distances. An analysis of mainly HST Distance Scale Key Project data shows a correlation between host galaxy metallicity and the rms scatter around the Cepheid P-L relation, which may support a recent suggestion that the P-L metallicity dependence is stronger than expected. If Cepheids do have a significant metallicity dependence then the Tully-Fisher scale error increases and the distances of the Virgo and Fornax clusters extend to more than 20Mpc, decreasing the value of Ho. Finally, if the Cepheids have a metallicity dependence then so do Type Ia Supernovae since the metallicity corrected Cepheid distances to eight galaxies with SNIa would then suggest that the SNIa peak luminosity is fainter in metal poor galaxies, with important implications for SNIa estimates of qo as well as Ho.
We present Tully-Fisher distances for 24 AGN host galaxies with black hole mass ($M_textrm{{BH}}$) measurements from reverberation mapping, as well as the first calibration of the $V-$band Tully-Fisher relation. Combining our measurements of HI 21cm emission with $HST$ and ground-based optical and near-infrared images allows multiple distance measurements for 19 galaxies and single measurements for the remaining 5. Separation of the nucleus from its host galaxy via surface brightness decomposition yields galaxy-only luminosities, thus allowing measurements of the distance moduli free of contamination from the AGN. For 14 AGN hosts, these are the first reported distances independent of redshift, and hence independent of peculiar velocities. For the remaining galaxies, we show good agreement between our distances and those previously reported from surface brightness fluctuations (SBF) and Cepheids. We also determine the total galaxy mass enclosed within the estimated HI radius, which when compared to the baryonic content allows for constraints on the dark matter masses. We find a typical mass fraction of $M_{textrm{DM}}$/$M_{textrm{DYN}}$ = 62%, and find significant correlations between $M_{textrm{BH}}$ $-$ $M_{textrm{DYN}}$ and $M_{textrm{BH}}$ $-$ $M_{textrm{DM}}$. Finally, we scale our galaxy radii based on estimated relationships between visible and halo radii and assume a flat rotation curve out to the halo radius to approximate $M_{textrm{HALO}}$. Over the range of $M_{textrm{BH}}$ and $M_{textrm{HALO}}$ in this sample, we find good agreement with observationally-constrained relationships between $M_{textrm{BH}}$ and $M_{textrm{HALO}}$ and with hydrodynamical simulations.
In a LCDM cosmology, the baryonic Tully-Fisher relation (BTFR) is expected to show significant intrinsic scatter resulting from the mass-concentration relation of dark matter halos and the baryonic-to-halo mass ratio. We study the BTFR using a sample of 118 disc galaxies (spirals and irregulars) with data of the highest quality: extended HI rotation curves (tracing the outer velocity) and Spitzer photometry at 3.6 $mu$m (tracing the stellar mass). Assuming that the stellar mass-to-light ratio (M*/L) is nearly constant at 3.6 $mu$m, we find that the scatter, slope, and normalization of the BTFR systematically vary with the adopted M*/L. The observed scatter is minimized for M*/L > 0.5, corresponding to nearly maximal discs in high-surface-brightness galaxies and BTFR slopes close to ~4. For any reasonable value of M*/L, the intrinsic scatter is ~0.1 dex, below general LCDM expectations. The residuals show no correlations with galaxy structural parameters (radius or surface brightness), contrary to the predictions from some semi-analytic models of galaxy formation. These are fundamental issues for LCDM cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا