ﻻ يوجد ملخص باللغة العربية
Jets are ubiquitous in the Universe and, as demonstrated in this volume, are seen from a large number of astrophysical objects. For a number of reasons, in particular their proximity and the abundant range of diagnostics to determine their characteristics, jets from young stars and their associated outflows may offer us the best opportunity to discover how jets are generated in general and the nature of the link between outflows and their accretion disks. Recently it has become clear that jets may be fundamental to the star formation process in removing angular momentum from the surrounding protoplanetary disk thereby allowing accretion to proceed. Moreover, with the realisation that planetary formation begins much earlier than previously thought, jets may also help forge planets by determining initial environmental characteristics. This seems to be particularly true within the so-called terrestrial planet forming zone. Here we review observations of jets from young stars which have greatly benefitted from new facilities such as ALMA, space observatories like Spitzer, Herschel and HST, and radio facilities like LOFAR and the VLA. Interferometers such as CHARA and GRAVITY are starting to make inroads into resolving how they are launched, and we can look forward to a bright future in our understanding of this phenomenon when JWST and the SKA come on stream. In addition, we examine the various magnetohydrodynamic models for how jets from young stars are thought to be generated and how observations may help us select between these various options.
Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission is associated with these jets. This emission is relatively weak and compact, and
The protostellar outflow mechanism operates for a significant fraction of the pre-main sequence phase of a solar mass star and is thought to have a key role in star and perhaps even planet formation. This energetic mechanism manifests itself in sever
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdB
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and
We present near-infrared [Fe II] images of four Class 0/I jets (HH 1/2, HH 34, HH 111, HH 46/47) observed with the Hubble Space Telescope Wide Field Camera 3. The unprecedented angular resolution allows us to measure proper motions, jet widths and tr