ﻻ يوجد ملخص باللغة العربية
The implications of the relativistic space-time structure for a physical description by quantum mechanical wave-functions are investigated. On the basis of a detailed analysis of Bells concept of local causality, which is violated in quantum theory, we argue that this is a subtle, as well as an important effort. A central requirement appearing in relativistic quantum mechanics, namely local commutativity, is analyzed in detail and possible justifications are given and discussed. The complexity of the implications of wave function reduction in connection with Minkowski space-time are illustrated by a quantum mechanical measurement procedure which was proposed by Aharonov and Albert. This procedure and its relativistic implications are explicitly analyzed and discussed in terms of state evolution. This analysis shows that the usual notion of state evolution fails in relativistic quantum theory. Two possible solutions of this problem are given. In particular, it is shown that also a theory with a distinguished foliation of space-time into space-like leafs - accounting for nonlocality - makes the right predictions for the Aharonov-Albert experiment. We will repeatedly encounter that an analysis of the wave-function alone does not suffice to answer the question of relativistic compatibility of the theory, but that the actual events in space time, which are predicted and described by the theory, are crucial. Relativist
In this paper we recall the construction of scalar field action on $kappa$-Minkowski space-time and investigate its properties. In particular we show how the co-product of $kappa$-Poincare algebra of symmetries arises from the analysis of the symmetr
This white paper aims to identify an open problem in Quantum Physics and the Nature of Reality --namely whether quantum theory and special relativity are formally compatible--, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.
A new localization scheme for Klein-Gordon particle states is introduced in the form of general space and time operators. The definition of these operators is achieved by establishing a second quantum field in the momentum space of the standard field
It is shown how a Doubly-Special Relativity model can emerge from a quantum cellular automaton description of the evolution of countably many interacting quantum systems. We consider a one-dimensional automaton that spawns the Dirac evolution in the
Late time properties of moving relativistic particles are studied. Within the proper relativistic treatment of the problem we find decay curves of such particles and we show that late time deviations of the survival probability of these particles fro