ﻻ يوجد ملخص باللغة العربية
Heralded single photons (HSPs) generated by spontaneous parametric down-conversion (SPDC) are useful resource to achieve various photonic quantum information processing. Given a large-scale experiment which needs multiple HSPs, increasing the generation rate with suppressing higher-order pair creation is desirable. One of the promising ways is to use a pump laser with higher repetition rate. However, little is known of the influence of the pump repetition rate on the indistinguishability of the HSP. In this work, we reveal that, as the pump repetition rate gets higher, the spectral purity of the HSP is degraded due to the sparse comb structure of the pump pulse. Furthermore, we show that the above difficulty is circumvented by performing temporal filtering. As a proof-of-principle experiment, we experimentally demonstrate a high-visibility Hong-Ou-Mandel interference between two independent HSPs generated by SPDC with 3.2 GHz-repetition-rate mode-locked pump pulses via temporal filtering. Our method forms an important building block to achieve large-scale, high-fidelity, and high-speed photonic quantum information processing.
We provide a statistically robust and accurate framework to measure and track the polarisation state of light employing Hong-Ou-Mandel interference. This is achieved by combining the concepts of maximum likelihood estimation and Fisher information ap
Hong-Ou-Mandel (HOM) interference, i.e. the bunching of indistinguishable photons at a beam splitter is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Although originally prop
Hong-Ou-Mandel interference, the fact that identical photons that arrive simultaneously on different input ports of a beam splitter bunch into a common output port, can be used to measure optical delays between different paths. It is generally assume
Optical interferometry has been a long-standing setup for characterization of quantum states of light. Both the linear and the nonlinear interferences can provide information about the light statistics an underlying detail of the light-matter interac
We propose an experimental scheme to implement a second-order nonlocal superposition operation and its variants by way of Hong-Ou-Mandel interference. The second-order coherent operations enable us to generate a NOON state with high particle number i