ﻻ يوجد ملخص باللغة العربية
Global localization and kidnapping are two challenging problems in robot localization. The popular method, Monte Carlo Localization (MCL) addresses the problem by iteratively updating a set of particles with a sampling-weighting loop. Sampling is decisive to the performance of MCL [1]. However, traditional MCL can only sample from a uniform distribution over the state space. Although variants of MCL propose different sampling models, they fail to provide an accurate distribution or generalize across scenes. To better deal with these problems, we present a distribution proposal model, named Deep Samplable Observation Model (DSOM). DSOM takes a map and a 2D laser scan as inputs and outputs a conditional multimodal probability distribution of the pose, making the samples more focusing on the regions with higher likelihood. With such samples, the convergence is expected to be more effective and efficient. Considering that the learning-based sampling model may fail to capture the true pose sometimes, we furthermore propose the Adaptive Mixture MCL (AdaM MCL), which deploys a trusty mechanism to adaptively select updating mode for each particle to tolerate this situation. Equipped with DSOM, AdaM MCL can achieve more accurate estimation, faster convergence and better scalability compared to previous methods in both synthetic and real scenes. Even in real environments with long-term changing, AdaM MCL is able to localize the robot using DSOM trained only by simulation observations from a SLAM map or a blueprint map.
Localization is a crucial capability for mobile robots and autonomous cars. In this paper, we address learning an observation model for Monte-Carlo localization using 3D LiDAR data. We propose a novel, neural network-based observation model that comp
High-accuracy absolute localization for a team of vehicles is essential when accomplishing various kinds of tasks. As a promising approach, collaborative localization fuses the individual motion measurements and the inter-vehicle measurements to coll
The spatiotemporal information plays crucial roles in a multi-agent system (MAS). However, for a highly dynamic and dense MAS in unknown environments, estimating its spatiotemporal states is a difficult problem. In this paper, we present BLAS: a wire
Indoor localization for autonomous micro aerial vehicles (MAVs) requires specific localization techniques, since the Global Positioning System (GPS) is usually not available. We present an efficient onboard computer vision approach that estimates 2D
Active localization is the problem of generating robot actions that allow it to maximally disambiguate its pose within a reference map. Traditional approaches to this use an information-theoretic criterion for action selection and hand-crafted percep