ﻻ يوجد ملخص باللغة العربية
The relative center-of-mass energy spread at $e^+e^-$ colliders is about $10^{-3}$, which is much larger than the widths of narrow resonances produced in the s-channel in $e^+e^-$ collisions. This circumstance greatly lowers the resonance production rates of J/Psi, Upsilon(1S), Upsilon(2S), Upsilon(3S) and makes it extremely difficult to observe resonance production of the Higgs boson. Thus, a significant reduction of the center-of-mass energy spread would open up great opportunities in the search for new physics in rare decays of narrow resonances, the search for new narrow states with small $Gamma_{e^+e^-}$, the study of true muonium and tauonium, etc. The existing monochromatization scheme is only suitable for head-on collisions, while $e^+e^-$ colliders with crossing angles (the so-called Crab Waist collision scheme) can provide significantly higher luminosity due to reduced collision effects. In this paper, we propose a new monochromatization method for colliders with a large crossing angle. The contribution of the beam energy spread to the spread of the center-of-mass energy is canceled by introducing an appropriate energy-angle correlation at the interaction point; $sigma_W/W sim (3-5)10^{-6}$ appears possible. Limitations of the proposed method are also considered.
Superconducting niobium cavity technology (used for ILC) makes it possible to build a linear collider with energy recovery (ERLC). To avoid parasitic collisions inside the linacs a twin LC is proposed. In this article, we consider the principle schem
Information deformation and loss in jet clustering are one of the major limitations for precisely measuring hadronic events at future $e^-e^+$ colliders. Because of their dominance in data, the measurements of such events are crucial for advancing th
TeV center of mass energy lepton-hadron collider is necessary both to clarify fundamental aspects of strong interactions and for adequate interpretation of the LHC data. Recently proposed QCD Explorer utilizes the energy advantage of the LHC proton a
QED processes at electron-positron colliders are considerd. We present differential cross-sections for large-angle Bhabha scattering, annihilation into muons and photons. Radiative corrections in the first order are taken into account exactly. Leadin
In this work, we consider the process $e^{+}+e^{-}rightarrow bbar{b}+slashed{E}_{T}$, at the future electron-positron colliders such as the International Linear Collider and Compact Linear Collider, to look for the dark matter (DM) effect and identif