ﻻ يوجد ملخص باللغة العربية
We prove, under a certain representation theoretic assumption, that the set of real symmetric matrices, whose eigenvalues satisfy a linear matrix inequality, is itself a spectrahedron. The main application is that derivative relaxations of the positive semidefinite cone are spectrahedra. From this we further deduce statements on their Wronskians. These imply that Newtons inequalities, as well as a strengthening of the correlation inequalities for hyperbolic polynomials, can be expressed as sums of squares.
Given two symmetric and positive semidefinite square matrices $A, B$, is it true that any matrix given as the product of $m$ copies of $A$ and $n$ copies of $B$ in a particular sequence must be dominated in the spectral norm by the ordered matrix pro
This paper addresses the development of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving optimization problems with linear constraints. The proposed algorithm is referred to as Linear Constraint CMSA-ES (lcCMSA-ES). It use
In this paper we show how to recover a spectral approximations to broad classes of structured matrices using only a polylogarithmic number of adaptive linear measurements to either the matrix or its inverse. Leveraging this result we obtain faster al
In 1943, Littlewood and Offord proved the first anti-concentration result for sums of independent random variables. Their result has since then been strengthened and generalized by generations of researchers, with applications in several areas of mat
A central tool in the study of nonhomogeneous random matrices, the noncommutative Khintchine inequality of Lust-Piquard and Pisier, yields a nonasymptotic bound on the spectral norm of general Gaussian random matrices $X=sum_i g_i A_i$ where $g_i$ ar