ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals

160   0   0.0 ( 0 )
 نشر من قبل Rong Ma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically study the three-dimensional (3D) quantum Hall effect (QHE) and magnetothermoelectric transport of Weyl semimetals in the presence of disorder. We obtain a bulk picture that the exotic 3D QHE emerges in a finite range of Fermi energy near the Weyl points determined by the gap between the $n=-1$ and $n=1$ Landau levels (LLs). The quantized Hall conductivity is attributable to the chiral zeroth LLs traversing the gap, and is robust against disorder scattering for an intermediate number of layers in the direction of the magnetic field. Moreover, we predict several interesting characteristic features of the thermoelectric transport coefficients in the 3D QHE regime, which can be probed experimentally. This may open an avenue for exploring Weyl physics in topological materials.



قيم البحث

اقرأ أيضاً

84 - S. Nandy , A. Taraphder , 2017
Weyl semimetals are intriguing topological states of matter that support various anomalous magneto-transport phenomena. One such phenomenon is a negative longitudinal ($mathbf{ abla} T parallel mathbf{B}$) magneto-thermal resistivity, which arises du e to chiral magnetic effect (CME). In this paper we show that another fascinating effect induced by CME is the planar thermal Hall effect (PTHE), i.e., appearance of an in-plane transverse temperature gradient when the current due to $mathbf{ abla} T$ and the magnetic field $mathbf{B}$ are not aligned with each other. Using semiclassical Boltzmann transport formalism in the relaxation time approximation we compute both longitudinal magneto-thermal conductivity (LMTC) and planar thermal Hall conductivity (PTHC) for a time reversal symmetry breaking WSM. We find that both LMTC and PTHC are quadratic in B in type-I WSM whereas each follows a linear-B dependence in type-II WSM in a configuration where $mathbf{ abla} T$ and B are applied along the tilt direction. In addition, we investigate the Wiedemann-Franz law for an inversion symmetry broken WSM (e.g., WTe$_{2}$) and find that this law is violated in these systems due to both chiral anomaly and CME.
After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate another family of Hall effect, namely, chiral anomaly induced nonlinear Hall effect (CNHE) in multi-Weyl semimetal (mWSM). In contrast to the BCD induced NLHE, CNHE appears because of the combination of both chiral anomaly and anomalous velocity due to non-trivial Berry curvature. Using the semiclassical Boltzmann theory within the relaxation time approximation, we show that, in contrast to the chiral anomaly induced linear Hall effect, the magnitude of CNHE decreases with the topological charge n. Interestingly, we find that unlike the case of n=1, the CNHE has different behaviors in different planes. Our prediction on the behavior of CNHE in mWSM can directly be checked in experiments.
The manifestation of chiral anomaly in Weyl semimetals typically relies on the observation of longitudinal magnetoconductance (LMC) along with the planar Hall effect, with a specific magnetic field and angle dependence. Here we solve the Boltzmann eq uation in the semiclassical regime for a prototype of a Weyl semimetal, allowing for both intravalley and intervalley scattering, along with including effects from the orbital magnetic moment (OMM), in a geometry where the electric and magnetic fields are not necessarily parallel to each other. We construct the phase diagram in the relevant parameter space that describes the shift from positive to negative LMC in the presence of OMM and sufficiently strong intervalley scattering, as has been recently pointed out for only parallel electric and magnetic fields. On the other hand, we find that the chiral anomaly contribution to the planar Hall effect always remains positive (unlike the LMC) irrespective of the inclusion or exclusion of OMM, or the strength of the intervalley scattering. Our predictions can be directly tested in experiments, and may be employed as new diagnostic procedures to verify chiral anomaly in Weyl systems.
While nondissipative hydrodynamics in two-dimensional electron systems has been extensively studied, the role of nondissipative viscosity in three-dimensional transport has remained elusive. In this work, we address this question by studying the nond issipative viscoelastic response of three dimensional crystals. We show that for systems with tetrahedral symmetries, there exist new, intrinsically three-dimensional Hall viscosity coefficients that cannot be obtained via a reduction to a quasi-two-dimensional system. To study these coefficients, we specialize to a theoretically and experimentally motivated tight binding model for a chiral magentic metal in (magnetic) space group [(M)SG] $P2_13$ (No.~198$.$9), a nonpolar group of recent experimental interest which hosts both chiral magnets and topological semimetals. Using the Kubo formula for viscosity, we compute the nondissipative Hall viscosity for the spin-1 fermion in two ways. First we use an electron-phonon coupling ansatz to derive the phonon strain coupling and associated phonon Hall viscosity. Second we use a momentum continuity equation to derive the viscosity corresponding to the conserved momentum density. We conclude by discussing the implication of our results for hydrodynamic transport in three-dimensional magnetic metals, and discuss some candidate materials in which these effects may be observed.
We study the positive longitudinal magnetoconductivity (LMC) and planar Hall effect as emergent effects of the chiral anomaly in Weyl semimetals, following a recent-developed theory by integrating the Landau quantization with Boltzmann equation. It i s found that, in the weak magnetic field regime, the LMC and planar Hall conductivity (PHC) obey $cos^{6}theta$ and $cos^{5}thetasin theta$ dependences on the angle $theta$ between the magnetic and electric fields. For higher magnetic fields, the LMC and PHC cross over to $cos^{2}theta$ and $costhetasintheta$ dependences, respectively. Interestingly, the PHC could exhibit quantum oscillations with varying $theta$, due to the periodic-in-$1/B$ oscillations of the chiral chemical potential. When the magnetic and electric fields are noncollinear, the LMC and PHC will deviate from the classical $B$-quadratic dependence, even in the weak magnetic field regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا