ﻻ يوجد ملخص باللغة العربية
We numerically study the three-dimensional (3D) quantum Hall effect (QHE) and magnetothermoelectric transport of Weyl semimetals in the presence of disorder. We obtain a bulk picture that the exotic 3D QHE emerges in a finite range of Fermi energy near the Weyl points determined by the gap between the $n=-1$ and $n=1$ Landau levels (LLs). The quantized Hall conductivity is attributable to the chiral zeroth LLs traversing the gap, and is robust against disorder scattering for an intermediate number of layers in the direction of the magnetic field. Moreover, we predict several interesting characteristic features of the thermoelectric transport coefficients in the 3D QHE regime, which can be probed experimentally. This may open an avenue for exploring Weyl physics in topological materials.
Weyl semimetals are intriguing topological states of matter that support various anomalous magneto-transport phenomena. One such phenomenon is a negative longitudinal ($mathbf{ abla} T parallel mathbf{B}$) magneto-thermal resistivity, which arises du
After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate another family of Hall effect, namely, chiral anomaly
The manifestation of chiral anomaly in Weyl semimetals typically relies on the observation of longitudinal magnetoconductance (LMC) along with the planar Hall effect, with a specific magnetic field and angle dependence. Here we solve the Boltzmann eq
While nondissipative hydrodynamics in two-dimensional electron systems has been extensively studied, the role of nondissipative viscosity in three-dimensional transport has remained elusive. In this work, we address this question by studying the nond
We study the positive longitudinal magnetoconductivity (LMC) and planar Hall effect as emergent effects of the chiral anomaly in Weyl semimetals, following a recent-developed theory by integrating the Landau quantization with Boltzmann equation. It i