ﻻ يوجد ملخص باللغة العربية
The $f(R,T)$ gravity is a theory whose gravitational action depends arbitrarily on the Ricci scalar, $R$, and the trace of the stress-energy tensor, $T$; its field equations also depend on matter Lagrangian, $mathcal{L}_{m}$. In the modified theories of gravity where field equations depend on Lagrangian, there is no uniqueness on the Lagrangian definition and the dynamics of the gravitational and matter fields can be different depending on the choice performed. In this work, we have eliminated the $mathcal{L}_{m}$ dependence from $f(R,T)$ gravity field equations by generalizing the approach of Moraes [Eur. Phys. J. C 79(8), 674 (2019)]. We also propose a general approach where we argue that the trace of the energy-momentum tensor must be considered an unknown variable of the field equations. The trace can only depend on fundamental constants and few inputs from the standard model. Our proposal resolves two limitations: first the energy-momentum tensor of the $f(R,T)$ gravity is not the perfect fluid one; second, the Lagrangian is not well-defined. As a test of our approach we applied it to the study of the matter era in cosmology, and the theory can successfully describe a transition between a decelerated Universe to an accelerated one without the need for dark energy.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
Slow-roll inflation is analyzed in the context of modified gravity within the Palatini formalism. As shown in the literature, inflation in this framework requires the presence of non-traceless matter, otherwise it does not occur just as a consequence
Braneworld scenarios consider our observable universe as a brane embedded in a 5D space, named bulk. In this work, I derive the field equations of a braneworld model in a generalized theory of gravitation, namely $f(R,T)$ gravity, with $R$ and $T$, r
In this work we propose the modelling of static wormholes within the $f(R,T)$ extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypothesis for their matter content, i.e., different relat
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat