ﻻ يوجد ملخص باللغة العربية
In String Gas Cosmology, the simplest shape modulus fields are naturally stabilized by taking into account the presence of string winding and momentum modes. We determine the resulting effective potential for these fields and show that it obeys the de Sitter conjecture, one of the swampland criteria for effective field theories to be consistent with superstring theory.
We study a model of the emergent dark universe, which lives on the time-like hypersurface in a five-dimensional bulk spacetime. The holographic fluid on the hypersurface is assumed to play the role of the dark sector, mainly including the dark energy
We review the advanced version of the KKLT construction and pure $d=4$ de Sitter supergravity, involving a nilpotent multiplet, with regard to various conjectures that de Sitter state cannot exist in string theory. We explain why we consider these co
We study properties of moduli stabilization in the four dimensional N = 1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy modu
The First and Second Swampland Conjectures (FSC & SSC) are substantially modified in non-critical string cosmology, in which cosmic time is identified with the time-like Liouville mode of the supercritical string. In this scenario the Friedmann equat
Among Swampland conditions, the distance conjecture characterizes the geometry of scalar fields and the de Sitter conjecture constrains allowed potentials on it. We point out a connection between the distance conjecture and a refined version of the d