ﻻ يوجد ملخص باللغة العربية
Intervals between discrete events representing human activities, as well as other types of events, often obey heavy-tailed distributions, and their impacts on collective dynamics on networks such as contagion processes have been intensively studied. The literature supports that such heavy-tailed distributions are present for inter-event times associated with both individual nodes and individual edges in networks. However, the simultaneous presence of heavy-tailed distributions of inter-event times for nodes and edges is a non-trivial phenomenon, and its origin has been elusive. In the present study, we propose a generative model and its variants to explain this phenomenon. We assume that each node independently transits between a high-activity and low-activity state according to a continuous-time two-state Markov process and that, for the main model, events on an edge occur at a high rate if and only if both end nodes of the edge are in the high-activity state. In other words, two nodes interact frequently only when both nodes prefer to interact with others. The model produces distributions of inter-event times for both individual nodes and edges that resemble heavy-tailed distributions across some scales. It also produces positive correlation in consecutive inter-event times, which is another stylized observation for empirical data of human activity. We expect that our modeling framework provides a useful benchmark for investigating dynamics on temporal networks driven by non-Poissonian event sequences.
A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that di
Real-world complex systems often comprise many distinct types of elements as well as many more types of networked interactions between elements. When the relative abundances of types can be measured well, we further observe heavy-tailed categorical d
We propose and analyze a new estimator of the covariance matrix that admits strong theoretical guarantees under weak assumptions on the underlying distribution, such as existence of moments of only low order. While estimation of covariance matrices c
We discuss a model of motion of substance through the nodes of a channel of a network. The channel can be modeled by a chain of urns where each urn can exchange substance with the neighboring urns. In addition the urns can exchange substance with the
Folksonomies provide a rich source of data to study social patterns taking place on the World Wide Web. Here we study the temporal patterns of users tagging activity. We show that the statistical properties of inter-arrival times between subsequent t