ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroweak Corrections in a Pseudo-Nambu Goldstone Dark Matter Model Revisited

70   0   0.0 ( 0 )
 نشر من قبل Rui Santos
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Having so far only indirect evidence for the existence of Dark Matter a plethora of experiments aims at direct detection of Dark Matter through the scattering of Dark Matter particles off atomic nuclei. For the correct interpretation and identification of the underlying nature of the Dark Matter constituents higher-order corrections to the cross section of Dark Matter-nucleon scattering are important, in particular in models where the tree-level cross section is negligibly small. In this work we revisit the electroweak corrections to the dark matter-nucleon scattering cross section in a model with a pseudo Nambu-Goldstone boson as the Dark Matter candidate. Two calculations that already exist in the literature, apply different approaches resulting in different final results for the cross section in some regions of the parameter space leading us to redo the calculation and analyse the two approaches to clarify the situation. We furthermore update the experimental constraints and examine the regions of the parameter space where the cross section is above the neutrino floor but which can only be probed in the far future.



قيم البحث

اقرأ أيضاً

A pseudo-Nambu-Goldstone boson (pNGB) is an attractive candidate for dark matter (DM) due to the simple evasion of the current severe limits of DM direct detection experiments. One of the pNGB DM models has been proposed based on a {it gauged} $U(1)_ {B-L}$ symmetry. The pNGB has long enough lifetime to be a DM and thermal relic abundance of pNGB DM can be fit with the observed value against the constraints on the DM decays from the cosmic-ray observations. The pNGB DM model can be embedded into an $SO(10)$ pNGB DM model in the framework of an $SO(10)$ grand unified theory, whose $SO(10)$ is broken to the Pati-Salam gauge group at the unified scale, and further to the Standard Model gauge group at the intermediate scale. Unlike the previous pNGB DM model, the parameters such as the gauge coupling constants of $U(1)_{B-L}$, the kinetic mixing parameter of between $U(1)_Y$ and $U(1)_{B-L}$ are determined by solving the renormalization group equations for gauge coupling constants with appropriate matching conditions. From the constraints of the DM lifetime and gamma-ray observations, the pNGB DM mass must be less than $mathcal{O}(100)$$,$GeV. We find that the thermal relic abundance can be consistent with all the constraints when the DM mass is close to half of the CP even Higg masses.
We outline a scenario where both the Higgs and a complex scalar dark matter candidate arise as the pseudo-Nambu-Goldstone bosons of breaking a global $SO(7)$ symmetry to $SO(6)$. The novelty of our construction is that the symmetry partners of the St andard Model top-quark are charged under a hidden color group and not the usual $SU(3)_c$. Consequently, the scale of spontaneous symmetry breaking and the masses of the top partners can be significantly lower than those with colored top partners. Taking these scales to be lower at once makes the model more natural and also reduces the induced non-derivative coupling between the Higgs and the dark matter. Indeed, natural realizations of this construction describe simple thermal WIMP dark matter which is stable under a global $U(1)_D$ symmetry. We show how the Large Hadron Collider along with current and next generation dark matter experiments will explore the most natural manifestations of this framework.
Although many astrophysical and cosmological observations point towards the existence of Dark Matter (DM), the nature of the DM particle has not been clarified to date. In this paper, we investigate a minimal model with a vector DM (VDM) candidate. W ithin this model, we compute the cross section for the scattering of the VDM particle with a nucleon. We provide the next-to-leading order (NLO) cross section for the direct detection of the DM particle. Subsequently, we study the phenomenological implications of the NLO corrections, in particular with respect to the sensitivity of the direct detection DM experiments. We further investigate more theoretical questions such as the gauge dependence of the results and the remaining theoretical uncertainties due to the applied approximations.
We investigate the potential stochastic gravitational waves from first-order electroweak phase transitions in a model with pseudo-Nambu-Goldstone dark matter and two Higgs doublets. The dark matter candidate can naturally evade direct detection bound s, and can achieve the observed relic abundance via the thermal mechanism. Three scalar fields in the model obtain vacuum expectation values, related to phase transitions at the early Universe. We search for the parameter points that can cause first-order phase transitions, taking into account the existed experimental constraints. The resulting gravitational wave spectra are further evaluated. Some parameter points are found to induce strong gravitational wave signals, which have the opportunity to be detected in future space-based interferometer experiments LISA, Taiji, and TianQin.
We consider a scale invariant extension of the standard model (SM) with a combined breaking of conformal and electroweak symmetry in a strongly interacting hidden $SU(n_c)$ gauge sector with $n_f$ vector-like hidden fermions. The (pseudo) Nambu-Golds tone bosons that arise due to dynamical chiral symmetry breaking are dark matter (DM) candidates. We focus on $n_f=n_c=3$, where $SU(3)$ is the largest symmetry group of hidden flavor which can be explicitly broken into either $U(1) times U(1)$ or $SU(2)times U(1)$. We study DM properties and discuss consistent parameter space for each case. Because of different mechanisms of DM annihilation the consistent parameter space in the case of $SU(2)times U(1)$ is significantly different from that of $SU(3)$ if the hidden fermions have a SM $U(1)_Y$ charge of $O(1)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا