ترغب بنشر مسار تعليمي؟ اضغط هنا

The rank 8 case of a conjecture on square-zero upper triangular matrices

67   0   0.0 ( 0 )
 نشر من قبل Berrin Senturk
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Berrin c{S}enturk




اسأل ChatGPT حول البحث

Let $A$ be the polynomial algebra in $r$ variables with coefficients in an algebraically closed field $k$. When the characteristic of $k$ is $2$, Carlsson conjectured that for any $mathrm{dg}$-$A$-module $M$, which has dimension $N$ as a free $A$-module, if the homology of $M$ is nontrivial and finite dimensional as a $k$-vector space, then $Ngeq 2^r$. Here we examine a stronger conjecture concerning varieties of square-zero upper triangular $Ntimes N$ matrices with entries in $A$. Stratifying these varieties via Borel orbits, we show that the stronger conjecture holds when $N = 8$ without any restriction on the characteristic of $k$. This result also verifies that if $X$ is a product of $3$ spheres of any dimensions, then the elementary abelian $2$-group of order $4$ cannot act freely on $X$.



قيم البحث

اقرأ أيضاً

In 2015, Brosnan and Chow, and independently Guay-Paquet, proved the Shareshian-Wachs conjecture, which links the Stanley-Stembridge conjecture in combinatorics to the geometry of Hessenberg varieties through Tymoczkos permutation group action on the cohomology ring of regular semisimple Hessenberg varieties. In previous work, the authors exploited this connection to prove a refined (graded) version of the Stanley-Stembridge conjecture in a special case. In this manuscript, we derive a new set of linear relations satisfied by the multiplicities of certain permutation representations in Tymoczkos representation. We also show that these relations are upper-triangular in an appropriate sense, and in particular, they uniquely determine the multiplicities. As an application of these results, we prove an inductive formula for the multiplicity coefficients corresponding to partitions with a maximal number of parts. It follows from our formula that these coefficients are non-negative, thus giving additional positive evidence for the graded Stanley--Stembridge conjecture in the general case.
334 - B. P. Duggal 2008
A Banach space operator $Tin B({cal X})$ is polaroid if points $lambdainisosigmasigma(T)$ are poles of the resolvent of $T$. Let $sigma_a(T)$, $sigma_w(T)$, $sigma_{aw}(T)$, $sigma_{SF_+}(T)$ and $sigma_{SF_-}(T)$ denote, respectively, the approximat e point, the Weyl, the Weyl essential approximate, the upper semi--Fredholm and lower semi--Fredholm spectrum of $T$. For $A$, $B$ and $Cin B({cal X})$, let $M_C$ denote the operator matrix $(A & C 0 & B)$. If $A$ is polaroid on $pi_0(M_C)={lambdainisosigma(M_C) 0<dim(M_C-lambda)^{-1}(0)<infty}$, $M_0$ satisfies Weyls theorem, and $A$ and $B$ satisfy either of the hypotheses (i) $A$ has SVEP at points $lambdainsigma_w(M_0)setminussigma_{SF_+}(A)$ and $B$ has SVEP at points $muinsigma_w(M_0)setminussigma_{SF_-}(B)$, or, (ii) both $A$ and $A^*$ have SVEP at points $lambdainsigma_w(M_0)setminussigma_{SF_+}(A)$, or, (iii) $A^*$ has SVEP at points $lambdainsigma_w(M_0)setminussigma_{SF_+}(A)$ and $B^*$ has SVEP at points $muinsigma_w(M_0)setminussigma_{SF_-}(B)$, then $sigma(M_C)setminussigma_w(M_C)=pi_0(M_C)$. Here the hypothesis that $lambdainpi_0(M_C)$ are poles of the resolvent of $A$ can not be replaced by the hypothesis $lambdainpi_0(A)$ are poles of the resolvent of $A$. For an operator $Tin B(X)$, let $pi_0^a(T)={lambda:lambdainisosigma_a(T), 0<dim(T-lambda)^{-1}(0)<infty}$. We prove that if $A^*$ and $B^*$ have SVEP, $A$ is polaroid on $pi_0^a(M)$ and $B$ is polaroid on $pi_0^a(B)$, then $sigma_a(M)setminussigma_{aw}(M)=pi_0^a(M)$.
In this paper we introduce the concept of clique disjoint edge sets in graphs. Then, for a graph $G$, we define the invariant $eta(G)$ as the maximum size of a clique disjoint edge set in $G$. We show that the regularity of the binomial edge ideal of $G$ is bounded above by $eta(G)$. This, in particular, settles a conjecture on the regularity of binomial edge ideals in full generality.
In this paper, we introduce a new graph whose vertices are the nonzero zero-divisors of commutative ring $R$ and for distincts elements $x$ and $y$ in the set $Z(R)^{star}$ of the nonzero zero-divisors of $R$, $x$ and $y$ are adjacent if and only if $xy=0$ or $x+yin Z(R)$. we present some properties and examples of this graph and we study his relation with the zero-divisor graph and with a subgraph of total graph of a commutative ring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا