ﻻ يوجد ملخص باللغة العربية
We describe a method to control the insulator-metal transition at the LaAlO3/SrTiO3 interface using ultra-low-voltage electron beam lithography (ULV-EBL). Compared with previous reports that utilize conductive atomic-force-microscope lithography (c-AFM), this approach can provide comparable resolution (~10 nm) at write speeds (10 mm/s) that are up to 10,000x faster than c-AFM. The writing technique is non-destructive and the conductive state is reversible via prolonged exposure to air. Transport properties of representative devices are measured at milli-Kelvin temperatures, where superconducting behavior is observed. We also demonstrate the ability to create conducting devices on graphene/LaAlO3/SrTiO3 heterostructures. The underlying mechanism is believed to be closely related to the same mechanism regulating c-AFM-based methods.
Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explor
Nanophotonic (nanoplasmonic) structures confine, guide, and concentrate light on the nanoscale. Advancement of nanophotonics critically depends on active nanoscale control of these phenomena. Localized control of the insulator and metallic phases of
A new method to fabricate non-superconducting mesoscopic tunnel junctions by oxidation of Ti is presented. The fabrication process uses conventional electron beam lithography and shadow deposition through an organic resist mask. Superconductivity in
We report superconductivity in quasi-1D nanostructures created at the LaAlO3/SrTiO3 interface. Nanostructures having line widths w~10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography.
We investigated metal-insulator transitions for double layer two-dimensional electron hole systems in transition metal dicalcogenides (TMDC) stacked on opposite sides of thin layers of boron nitride (BN). The interparticle interaction is calculated b