ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniquely optimal codes of low complexity are symmetric

60   0   0.0 ( 0 )
 نشر من قبل Hans Parshall
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate explicit predictions concerning the symmetry of optimal codes in compact metric spaces. This motivates the study of optimal codes in various spaces where these predictions can be tested.

قيم البحث

اقرأ أيضاً

Minimum storage regenerating (MSR) codes are MDS codes which allow for recovery of any single erased symbol with optimal repair bandwidth, based on the smallest possible fraction of the contents downloaded from each of the other symbols. Recently, ce rtain Reed-Solomon codes were constructed which are MSR. However, the sub-packetization of these codes is exponentially large, growing like $n^{Omega(n)}$ in the constant-rate regime. In this work, we study the relaxed notion of $epsilon$-MSR codes, which incur a factor of $(1+epsilon)$ higher than the optimal repair bandwidth, in the context of Reed-Solomon codes. We give constructions of constant-rate $epsilon$-MSR Reed-Solomon codes with polynomial sub-packetization of $n^{O(1/epsilon)}$ and thereby giving an explicit tradeoff between the repair bandwidth and sub-packetization.
We investigate perfect codes in $mathbb{Z}^n$ under the $ell_p$ metric. Upper bounds for the packing radius $r$ of a linear perfect code, in terms of the metric parameter $p$ and the dimension $n$ are derived. For $p = 2$ and $n = 2, 3$, we determine all radii for which there are linear perfect codes. The non-existence results for codes in $mathbb{Z}^n$ presented here imply non-existence results for codes over finite alphabets $mathbb{Z}_q$, when the alphabet size is large enough, and has implications on some recent constructions of spherical codes.
How can $d+k$ vectors in $mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $theta(d,k):=min_Xmax_{x eq yin X}|langle x,yrangle|$ where the minimum is taken over all collections of $d+k$ unit vectors $Xsubseteqmathbb{R}^d$. In this paper, we focus on the case where $k$ is fixed and $dtoinfty$. In establishing bounds on $theta(d,k)$, we find an intimate connection to the existence of systems of ${k+1choose 2}$ equiangular lines in $mathbb{R}^k$. Using this connection, we are able to pin down $theta(d,k)$ whenever $kin{1,2,3,7,23}$ and establish asymptotics for general $k$. The main tool is an upper bound on $mathbb{E}_{x,ysimmu}|langle x,yrangle|$ whenever $mu$ is an isotropic probability mass on $mathbb{R}^k$, which may be of independent interest. Our results translate naturally to the analogous question in $mathbb{C}^d$. In this case, the question relates to the existence of systems of $k^2$ equiangular lines in $mathbb{C}^k$, also known as SIC-POVM in physics literature.
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same number $lambda$ of blocks. A collection of matrices in over ${mathbb F}_q$ is said to hold a subspace design if the set of column spaces of its elements forms the blocks of a subspace design. We use notions of puncturing and shortening of rank metric codes and the rank-metric MacWilliams identities to establish conditions under which the words of a given rank in a linear rank metric code hold a subspace design.
In this paper we investigate combinatorial constructions for $w$-cyclic holely group divisible packings with block size three (briefly by $3$-HGDPs). For any positive integers $u,v,w$ with $uequiv0,1~(bmod~3)$, the exact number of base blocks of a ma ximum $w$-cyclic $3$-HGDP of type $(u,w^v)$ is determined. This result is used to determine the exact number of codewords in a maximum three-dimensional $(utimes vtimes w,3,1)$ optical orthogonal code with at most one optical pulse per spatial plane and per wavelength plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا