ترغب بنشر مسار تعليمي؟ اضغط هنا

CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

166   0   0.0 ( 0 )
 نشر من قبل Victor Buza
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, $r$, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for $r > 0.003$ at greater than $5sigma$, or, in the absence of a detection, of reaching an upper limit of $r < 0.001$ at $95%$ CL.

قيم البحث

اقرأ أيضاً

80 - Julien Carron 2018
We demonstrate how to obtain optimal constraints on a primordial gravitational wave component in lensed Cosmic Microwave Background (CMB) data under ideal conditions. We first derive an estimator of the tensor-to-scalar ratio, $r$, by using an error- controlled close approximation to the exact posterior, under the assumption of Gaussian primordial CMB and lensing deflection potential. This combines fast internal iterative lensing reconstruction with optimal recovery of the unlensed CMB. We evaluate its performance on simulated low-noise polarization data targeted at the recombination peak. We carefully demonstrate our $r$-posterior estimate is optimal and shows no significant bias, making it the most powerful estimator of primordial gravitational waves from the CMB. We compare these constraints to those obtained from $B$-mode band-power likelihood analyses on the same simulated data, before and after map-level quadratic estimator delensing, and iterative delensing. Internally, iteratively delensed band powers are only slightly less powerful on average (by less than 10%), promising close-to-optimal constraints from a stage IV CMB experiment.
We show that the new precise measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies made by the Planck satellite significantly improves previous constraints on the cosmic gravitational waves background (CGWB) at f requencies $f>10^{-15}$ Hz. On scales smaller than the horizon at the time of decoupling, primordial gravitational waves contribute to the total radiation content of the Universe. Considering adiabatic perturbations, CGWB affects temperature and polarization CMB power spectra and matter power spectrum in a manner identical to relativistic particles. Considering the latest Planck results we constrain the CGWB energy density to $Omega_{rm gw} h^2 <1.7times 10^{-6} $ at 95% CL. Combining CMB power spectra with lensing, BAO and primordial Deuterium abundance observations, we obtain $Omega_{rm gw} h^2 <1.2times 10^{-6} $ at 95% CL, improving previous Planck bounds by a factor 3 and the recent direct upper limit from the LIGO and VIRGO experiments a factor 2. A combined analysis of future satellite missions as COrE and EUCLID could improve current bound by more than an order of magnitude.
277 - Hong Li , Si-Yu Li , Yang Liu 2017
In this paper, we will give a general introduction to the project of Ali CMB Polarization Telescope (AliCPT), which is a Sino-US joint project led by the Institute of High Energy Physics (IHEP) and has involved many different institutes in China. It is the first ground-based Cosmic Microwave Background (CMB) polarization experiment in China and an integral part of Chinas Gravitational Waves Program. The main scientific goal of AliCPT project is to probe the primordial gravitational waves (PGWs) originated from the very early Universe. The AliCPT project includes two stages. The first stage referred to as AliCPT-1, is to build a telescope in the Ali region of Tibet with an altitude of 5,250 meters. Once completed, it will be the worldwide highest ground-based CMB observatory and open a new window for probing PGWs in northern hemisphere. AliCPT-1 telescope is designed to have about 7,000 TES detectors at 90GHz and 150GHz. The second stage is to have a more sensitive telescope (AliCPT-2) with the number of detectors more than 20,000. Our simulations show that AliCPT will improve the current constraint on the tensor-to-scalar ratio $r$ by one order of magnitude with 3 years observation. Besides the PGWs, the AliCPT will also enable a precise measurement on the CMB rotation angle and provide a precise test on the CPT symmetry. We show 3 years observation will improve the current limit by two order of magnitude.
We present a constraint on the tensor-to-scalar ratio, $r$, derived from measurements of cosmic microwave background (CMB) polarization $B$-modes with delensing, whereby the uncertainty on $r$ contributed by the sample variance of the gravitational l ensing $B$-modes is reduced by cross-correlating against a lensing $B$-mode template. This template is constructed by combining an estimate of the polarized CMB with a tracer of the projected large-scale structure. The large-scale-structure tracer used is a map of the cosmic infrared background derived from Planck satellite data, while the polarized CMB map comes from a combination of South Pole Telescope, BICEP/Keck, and Planck data. We expand the BICEP/Keck likelihood analysis framework to accept a lensing template and apply it to the BICEP/Keck data set collected through 2014 using the same parametric foreground modelling as in the previous analysis. From simulations, we find that the uncertainty on $r$ is reduced by $sim10%$, from $sigma(r)$= 0.024 to 0.022, which can be compared with a $sim26%$ reduction obtained when using a perfect lensing template. Applying the technique to the real data, the constraint on $r$ is improved from $r_{0.05} < 0.090$ to $r_{0.05} < 0.082$ (95% C.L.). This is the first demonstration of improvement in an $r$ constraint through delensing.
Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several f oreground issues, such as the thermal dust emission. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recent polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio $r$ by considering the polarization rotation angle which can be separated into a background isotropic part and a small anisotropic part. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the self-calibration method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including the anisotropies in the analysis could slightly weaken the constraints on $r$, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle can not be taken into account properly in the analysis, the constraints on $r$ will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational waves accurately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا