ﻻ يوجد ملخص باللغة العربية
The space-based gravitational-wave observatory LISA relies on a form of synthetic interferometry (time-delay interferometry, or TDI) where the otherwise overwhelming laser phase noise is canceled by linear combinations of appropriately delayed phase measurements. These observables grow in length and complexity as the realistic features of the LISA orbits are taken into account. In this paper we outline an implicit formulation of TDI where we write the LISA likelihood directly in terms of the basic phase measurements, and we marginalize over the laser phase noises in the limit of infinite laser-noise variance. Equivalently, we rely on TDI observables that are defined numerically (rather than algebraically) from a discrete-filter representation of the laser propagation delays. Our method generalizes to any time dependence of the armlengths; it simplifies the modeling of gravitational-wave signals; and it allows a straightforward treatment of data gaps and missing measurements.
Space-based gravitational wave detectors cannot keep rigid structures and precise arm length equality, so the precise equality of detector arms which is required in a ground-based interferometer to cancel the overwhelming laser noise is impossible. T
The future space-based gravitational wave observatory LISA will consist of a constellation of three spacecraft in a triangular constellation, connected by laser interferometers with 2.5 million-kilometer arms. Among other challenges, the success of t
We introduce a generic algorithm to determine the time delays and spacecraft (S/C) positions to compose any time-delay interferometry (TDI) channel in the dynamical case and evaluate its sensitivity by using a full numerical method. We select 11 seco
The ongoing development of the space-based laser interferometer missions is aiming at unprecedented gravitational wave detections in the millihertz frequency band. The spaceborne nature of the experimental setups leads to a degree of subtlety regardi
ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitation Wave detection) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection sensitivity is shifted 52 t