ترغب بنشر مسار تعليمي؟ اضغط هنا

Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of Operating Field

92   0   0.0 ( 0 )
 نشر من قبل Daochang Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Surgical skill assessment is important for surgery training and quality control. Prior works on this task largely focus on basic surgical tasks such as suturing and knot tying performed in simulation settings. In contrast, surgical skill assessment is studied in this paper on a real clinical dataset, which consists of fifty-seven in-vivo laparoscopic surgeries and corresponding skill scores annotated by six surgeons. From analyses on this dataset, the clearness of operating field (COF) is identified as a good proxy for overall surgical skills, given its strong correlation with overall skills and high inter-annotator consistency. Then an objective and automated framework based on neural network is proposed to predict surgical skills through the proxy of COF. The neural network is jointly trained with a supervised regression loss and an unsupervised rank loss. In experiments, the proposed method achieves 0.55 Spearmans correlation with the ground truth of overall technical skill, which is even comparable with the human performance of junior surgeons.



قيم البحث

اقرأ أيضاً

74 - Aneeq Zia , Irfan Essa 2017
Purpose: Manual feedback in basic RMIS training can consume a significant amount of time from expert surgeons schedule and is prone to subjectivity. While VR-based training tasks can generate automated score reports, there is no mechanism of generati ng automated feedback for surgeons performing basic surgical tasks in RMIS training. In this paper, we explore the usage of different holistic features for automated skill assessment using only robot kinematic data and propose a weighted feature fusion technique for improving score prediction performance. Methods: We perform our experiments on the publicly available JIGSAWS dataset and evaluate four different types of holistic features from robot kinematic data - Sequential Motion Texture (SMT), Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Approximate Entropy (ApEn). The features are then used for skill classification and exact skill score prediction. Along with using these features individually, we also evaluate the performance using our proposed weighted combination technique. Results: Our results demonstrate that these holistic features outperform all previous HMM based state-of-the-art methods for skill classification on the JIGSAWS dataset. Also, our proposed feature fusion strategy significantly improves performance for skill score predictions achieving up to 0.61 average spearman correlation coefficient. Conclusions: Holistic features capturing global information from robot kinematic data can successfully be used for evaluating surgeon skill in basic surgical tasks on the da Vinci robot. Using the framework presented can potentially allow for real time score feedback in RMIS training.
Five billion people in the world lack access to quality surgical care. Surgeon skill varies dramatically, and many surgical patients suffer complications and avoidable harm. Improving surgical training and feedback would help to reduce the rate of co mplications, half of which have been shown to be preventable. To do this, it is essential to assess operative skill, a process that currently requires experts and is manual, time consuming, and subjective. In this work, we introduce an approach to automatically assess surgeon performance by tracking and analyzing tool movements in surgical videos, leveraging region-based convolutional neural networks. In order to study this problem, we also introduce a new dataset, m2cai16-tool-locations, which extends the m2cai16-tool dataset with spatial bounds of tools. While previous methods have addressed tool presence detection, ours is the first to not only detect presence but also spatially localize surgical tools in real-world laparoscopic surgical videos. We show that our method both effectively detects the spatial bounds of tools as well as significantly outperforms existing methods on tool presence detection. We further demonstrate the ability of our method to assess surgical quality through analysis of tool usage patterns, movement range, and economy of motion.
Surgical training in medical school residency programs has followed the apprenticeship model. The learning and assessment process is inherently subjective and time-consuming. Thus, there is a need for objective methods to assess surgical skills. Here , we use the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to systematically survey the literature on the use of Deep Neural Networks for automated and objective surgical skill assessment, with a focus on kinematic data as putative markers of surgical competency. There is considerable recent interest in deep neural networks (DNN) due to the availability of powerful algorithms, multiple datasets, some of which are publicly available, as well as efficient computational hardware to train and host them. We have reviewed 530 papers, of which we selected 25 for this systematic review. Based on this review, we concluded that DNNs are powerful tools for automated, objective surgical skill assessment using both kinematic and video data. The field would benefit from large, publicly available, annotated datasets that are representative of the surgical trainee and expert demographics and multimodal data beyond kinematics and videos.
412 - Jun Lin , Han Yu , Zhiqi Shen 2014
For software development companies, one of the most important objectives is to identify and acquire talented software engineers in order to maintain a skilled team that can produce competitive products. Traditional approaches for finding talented you ng software engineers are mainly through programming contests of various forms which mostly test participants programming skills. However, successful software engineering in practice requires a wider range of skills from team members including analysis, design, programming, testing, communication, collaboration, and self-management, etc. In this paper, we explore potential ways to identify talented software engineering students in a data-driven manner through an Agile Project Management (APM) platform. Through our proposed HASE online APM tool, we conducted a study involving 21 Scrum teams consisting of over 100 undergraduate software engineering students in multi-week coursework projects in 2014. During this study, students performed over 10,000 ASD activities logged by HASE. We demonstrate the possibility and potentials of this new research direction, and discuss its implications for software engineering education and industry recruitment.
It is difficult to estimate the midsagittal plane of human subjects with craniomaxillofacial (CMF) deformities. We have developed a LAndmark GEometric Routine (LAGER), which automatically estimates a midsagittal plane for such subjects. The LAGER alg orithm was based on the assumption that the optimal midsagittal plane of a patient with a deformity is the premorbid midsagittal plane of the patient (i.e. hypothetically normal without deformity). The LAGER algorithm consists of three steps. The first step quantifies the asymmetry of the landmarks using a Euclidean distance matrix analysis and ranks the landmarks according to their degree of asymmetry. The second step uses a recursive algorithm to drop outlier landmarks. The third step inputs the remaining landmarks into an optimization algorithm to determine an optimal midsaggital plane. We validate LAGER on 20 synthetic models mimicking the skulls of real patients with CMF deformities. The results indicated that all the LAGER algorithm-generated midsagittal planes met clinical criteria. Thus it can be used clinically to determine the midsagittal plane for patients with CMF deformities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا