ﻻ يوجد ملخص باللغة العربية
We consider a formal discretisation of Euclidean quantum gravity defined by a statistical model of random $3$-regular graphs and making using of the Ollivier curvature, a coarse analogue of the Ricci curvature. Numerical analysis shows that the Hausdorff and spectral dimensions of the model approach $1$ in the joint classical-thermodynamic limit and we argue that the scaling limit of the model is the circle of radius $r$, $S^1_r$. Given mild kinematic constraints, these claims can be proven with full mathematical rigour: speaking precisely, it may be shown that for $3$-regular graphs of girth at least $4$, any sequence of action minimising configurations converges in the sense of Gromov-Hausdorff to $S^1_r$. We also present strong evidence for the existence of a second-order phase transition through an analysis of finite size effects. This -- essentially solvable -- toy model of emergent one-dimensional geometry is meant as a controllable paradigm for the nonperturbative definition of random flat surfaces.
In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in t
We derive the general exact forms of the Wigner function, of mean values of conserved currents, of the spin density matrix, of the spin polarization vector and of the distribution function of massless particles for the free Dirac field at global ther
We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equ
Non-equilibrium thermodynamics of Onsager and Machlup and of Hashitsume is reformulated as a gravity analog model, in which thermodynamic variables, kinetic coefficients and generalized forces form, respectively, coordinates, metric tensor and vector
We develop a truncated Hamiltonian method to study nonequilibrium real time dynamics in the Schwinger model - the quantum electrodynamics in D=1+1. This is a purely continuum method that captures reliably the invariance under local and global gauge t