ترغب بنشر مسار تعليمي؟ اضغط هنا

An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory PDEs

98   0   0.0 ( 0 )
 نشر من قبل Alexander Moriggl
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Rational exponential integrators (REXI) are a class of numerical methods that are well suited for the time integration of linear partial differential equations with imaginary eigenvalues. Since these methods can be parallelized in time (in addition to the spatial parallelization that is commonly performed) they are well suited to exploit modern high performance computing systems. In this paper, we propose a novel REXI scheme that drastically improves accuracy and efficiency. The chosen approach will also allow us to easily determine how many terms are required in the approximation in order to obtain accurate results. We provide comparative numerical simulations for a shallow water equation that highlight the efficiency of our approach and demonstrate that REXI schemes can be efficiently implemented on graphic processing units.



قيم البحث

اقرأ أيضاً

We propose a model reduction procedure for rapid and reliable solution of parameterized hyperbolic partial differential equations. Due to the presence of parameter-dependent shock waves and contact discontinuities, these problems are extremely challe nging for traditional model reduction approaches based on linear approximation spaces. The main ingredients of the proposed approach are (i) an adaptive space-time registration-based data compression procedure to align local features in a fixed reference domain, (ii) a space-time Petrov-Galerkin (minimum residual) formulation for the computation of the mapped solution, and (iii) a hyper-reduction procedure to speed up online computations. We present numerical results for a Burgers model problem and a shallow water model problem, to empirically demonstrate the potential of the method.
In this work, we determine the full expression of the local truncation error of hyperbolic partial differential equations (PDEs) on a uniform mesh. If we are employing a stable numerical scheme and the global solution error is of the same order of ac curacy as the global truncation error, we make the following observations in the asymptotic regime, where the truncation error is dominated by the powers of $Delta x$ and $Delta t$ rather than their coefficients. Assuming that we reach the asymptotic regime before the machine precision error takes over, (a) the order of convergence of stable numerical solutions of hyperbolic PDEs at constant ratio of $Delta t$ to $Delta x$ is governed by the minimum of the orders of the spatial and temporal discretizations, and (b) convergence cannot even be guaranteed under only spatial or temporal refinement. We have tested our theory against numerical methods employing Method of Lines and not against ones that treat space and time together, and we have not taken into consideration the reduction in the spatial and temporal orders of accuracy resulting from slope-limiting monotonicity-preserving strategies commonly applied to finite volume methods. Otherwise, our theory applies to any hyperbolic PDE, be it linear or non-linear, and employing finite difference, finite volume, or finite element discretization in space, and advanced in time with a predictor-corrector, multistep, or a deferred correction method. If the PDE is reduced to an ordinary differential equation (ODE) by specifying the spatial gradients of the dependent variable and the coefficients and the source terms to be zero, then the standard local truncation error of the ODE is recovered. We perform the analysis with generic and specific hyperbolic PDEs using the symbolic algebra package SymPy, and conduct a number of numerical experiments to demonstrate our theoretical findings.
In this paper, we introduce a multiscale framework based on adaptive edge basis functions to solve second-order linear elliptic PDEs with rough coefficients. One of the main results is that we prove the proposed multiscale method achieves nearly expo nential convergence in the approximation error with respect to the computational degrees of freedom. Our strategy is to perform an energy orthogonal decomposition of the solution space into a coarse scale component comprising $a$-harmonic functions in each element of the mesh, and a fine scale component named the bubble part that can be computed locally and efficiently. The coarse scale component depends entirely on function values on edges. Our approximation on each edge is made in the Lions-Magenes space $H_{00}^{1/2}(e)$, which we will demonstrate to be a natural and powerful choice. We construct edge basis functions using local oversampling and singular value decomposition. When local information of the right-hand side is adaptively incorporated into the edge basis functions, we prove a nearly exponential convergence rate of the approximation error. Numerical experiments validate and extend our theoretical analysis; in particular, we observe no obvious degradation in accuracy for high-contrast media problems.
Recently, neural networks have been widely applied for solving partial differential equations. However, the resulting optimization problem brings many challenges for current training algorithms. This manifests itself in the fact that the convergence order that has been proven theoretically cannot be obtained numerically. In this paper, we develop a novel greedy training algorithm for solving PDEs which builds the neural network architecture adaptively. It is the first training algorithm that observes the convergence order of neural networks numerically. This innovative algorithm is tested on several benchmark examples in both 1D and 2D to confirm its efficiency and robustness.
In this article, an advanced differential quadrature (DQ) approach is proposed for the high-dimensional multi-term time-space-fractional partial differential equations (TSFPDEs) on convex domains. Firstly, a family of high-order difference schemes is introduced to discretize the time-fractional derivative and a semi-discrete scheme for the considered problems is presented. We strictly prove its unconditional stability and error estimate. Further, we derive a class of DQ formulas to evaluate the fractional derivatives, which employs radial basis functions (RBFs) as test functions. Using these DQ formulas in spatial discretization, a fully discrete DQ scheme is then proposed. Our approach provides a flexible and high accurate alternative to solve the high-dimensional multi-term TSFPDEs on convex domains and its actual performance is illustrated by contrast to the other methods available in the open literature. The numerical results confirm the theoretical analysis and the capability of our proposed method finally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا