ترغب بنشر مسار تعليمي؟ اضغط هنا

Popularity and Centrality in Spotify Networks: Critical transitions in eigenvector centrality

68   0   0.0 ( 0 )
 نشر من قبل Tobin South
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The modern age of digital music access has increased the availability of data about music consumption and creation, facilitating the large-scale analysis of the complex networks that connect music together. Data about user streaming behaviour, and the musical collaboration networks are particularly important with new data-driven recommendation systems. Without thorough analysis, such collaboration graphs can lead to false or misleading conclusions. Here we present a new collaboration network of artists from the online music streaming service Spotify, and demonstrate a critical change in the eigenvector centrality of artists, as low popularity artists are removed. The critical change in centrality, from classical artists to rap artists, demonstrates deeper structural properties of the network. A Social Group Centrality model is presented to simulate this critical transition behaviour, and switching between dominant eigenvectors is observed. This model presents a novel investigation of the effect of popularity bias on how centrality and importance are measured, and provides a new tool for examining such flaws in networks.

قيم البحث

اقرأ أيضاً

Complex networks or graphs provide a powerful framework to understand importance of individuals and their interactions in real-world complex systems. Several graph theoretical measures have been introduced to access importance of the individual in sy stems represented by networks. Particularly, eigenvector centrality (EC) measure has been very popular due to its ability in measuring importance of the nodes based on not only number of interactions they acquire but also particular structural positions they have in the networks. Furthermore, the presence of certain structural features, such as the existence of high degree nodes in a network is recognized to induce localization transition of the principal eigenvector (PEV) of the networks adjacency matrix. Localization of PEV has been shown to cause difficulties in assigning centrality weights to the nodes based on the EC. We revisit PEV localization and its relation with failure of EC problem, and by using simple model networks demonstrate that in addition to the localization of the PEV, the delocalization of PEV may also create difficulties for using EC as a measure to rank the nodes. Our investigation while providing fundamental insight to the relation between PEV localization and centrality of nodes in networks, suggests that for the networks having delocalized PEVs, it is better to use degree centrality measure to rank the nodes.
Competition networks are formed via adversarial interactions between actors. The Dynamic Competition Hypothesis predicts that influential actors in competition networks should have a large number of common out-neighbors with many other nodes. We empi rically study this idea as a centrality score and find the measure predictive of importance in several real-world networks including food webs, conflict networks, and voting data from Survivor.
Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download.
There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal ev olution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
As relational datasets modeled as graphs keep increasing in size and their data-acquisition is permeated by uncertainty, graph-based analysis techniques can become computationally and conceptually challenging. In particular, node centrality measures rely on the assumption that the graph is perfectly known -- a premise not necessarily fulfilled for large, uncertain networks. Accordingly, centrality measures may fail to faithfully extract the importance of nodes in the presence of uncertainty. To mitigate these problems, we suggest a statistical approach based on graphon theory: we introduce formal definitions of centrality measures for graphons and establish their connections to classical graph centrality measures. A key advantage of this approach is that centrality measures defined at the modeling level of graphons are inherently robust to stochastic variations of specific graph realizations. Using the theory of linear integral operators, we define degree, eigenvector, Katz and PageRank centrality functions for graphons and establish concentration inequalities demonstrating that graphon centrality functions arise naturally as limits of their counterparts defined on sequences of graphs of increasing size. The same concentration inequalities also provide high-probability bounds between the graphon centrality functions and the centrality measures on any sampled graph, thereby establishing a measure of uncertainty of the measured centrality score. The same concentration inequalities also provide high-probability bounds between the graphon centrality functions and the centrality measures on any sampled graph, thereby establishing a measure of uncertainty of the measured centrality score.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا