ﻻ يوجد ملخص باللغة العربية
Enhancing the light-matter interaction in two-dimensional (2D) materials with high-$Q$ resonances in photonic structures has boosted the development of optical and photonic devices. Herein, we intend to build a bridge between the radiation engineering and the bound states in the continuum (BIC), and present a general method to control light absorption at critical coupling through the quasi-BIC resonance. In a single-mode two-port system composed of graphene coupled with silicon nanodisk metasurfaces, the maximum absorption of 0.5 can be achieved when the radiation rate of the magnetic dipole resonance equals to the dissipate loss rate of graphene. Furthermore, the absorption bandwidth can be adjusted more than two orders of magnitude from 0.9 nm to 94 nm by simultaneously changing the asymmetric parameter of metasurfaces, the Fermi level and the layer number of graphene. This work reveals out the essential role of BIC in radiation engineering and provides promising strategies in controlling light absorption of 2D materials for the next-generation optical and photonic devices, e.g., light emitters, detectors, modulators, and sensors.
Recent progress in nanophotonics is driven by the desire to engineer light-matter interaction in two-dimensional (2D) materials using high-quality resonances in plasmonic and dielectric structures. Here, we demonstrate a link between the radiation co
Enhancing the light-matter interactions in two-dimensional materials via optical metasurfaces has attracted much attention due to its potential to enable breakthrough in advanced compact photonic and quantum information devices. Here, we theoreticall
Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we employ magnetic dipole
A patterned structure of monolithic hexagonal boron nitride (hBN) on a glass substrate, which can enhance the emission of the embedded single photon emitters (SPEs), is useful for onchip single-photon sources of high-quality. Here, we design and demo
Enhanced optical absorption in two-dimensional (2D) materials has recently moved into the focus of nanophotonics research. In this work, we present a gain-assisted method to achieve critical coupling and demonstrate the maximum absorption in undoped