ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Monitoring of Blazar S5 0716+714: Brightness-Dependent Spectral Behavior

93   0   0.0 ( 0 )
 نشر من قبل Hai-Cheng Feng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we report the new results of spectroscopic observations of $gamma$-ray blazar S5 0716+714 from 2019 September to 2020 March with the 2.4 m optical telescope at Lijiang Observatory of Yunnan Observatories. The median cadence of observations is $sim$ 1 day. During the second observation period (Epoch2), the observational data reveal an extremely bright state and a bluer-when-brighter (BWB) chromatism. The BWB trend of Epoch2 differs significantly from that of the first observation period (Epoch1). A significantly brightness-dependent BWB chromatism emerges in the total data of Epoch1 and Epoch2. The BWB trend becomes weaker towards the brighter states, and likely becomes saturated at the highest state. Based on a log-parabolic function, a power-law of synchrotron peak flux and frequency $ u_{rm{p}}$, and a power-law of the curvature of synchrotron spectrum and its $ u_{rm{p}}$, simulation well reproduces the brightness-dependent BWB trend of S5 0716+714. The BWB trend is seemingly controlled by the shift of $ u_{rm{p}}$ with respect to the observational window, and effectively may be dominated by the variations of electron average energy and magnetic field in emitting region.

قيم البحث

اقرأ أيضاً

130 - C. S. Stalin 2009
We present results of our intra-night optical flux monitoring observations of S5 0716+714 done simultaneously in gRI filters. The observations were done using Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) instrument on t he 50 cm telescope at the Okayama Astrophysical Observatory over 30 nights between 11 March 2008 and 8 May 2008. Of these 30 nights, 22 nights have continuous (without any break) observations with duration ranging from 1 to 6 hours and hence were considered for intra-night optical variability (INOV). In total we have 4888 datapoints which were simultaneous in gR and I filters. Of the 22 nights considered for INOV, the object showed flux variability on 19 nights with the amplitude of variability in the I-band ranging from ~4% to ~55%. The duty cycle for INOV was thus found to be 83%. No time lag between different bands was noticed on most of the nights, except for 3 nights where the variation in g was found to lead that of the I band by 0.3 to 1.5 hrs. On inter-night timescales, no lag was found between g and I bands. On inter-night timescales as well as intra-night timescales on most of the nights, the amplitude of variability was found to increase toward shorter wavelengths. The flux variations in the different bands were not achromatic, with the blazar tending to become bluer when brighter both on inter-night and intra-night timescales; and this might be attributed to the larger amplitude variation at shorter wavelengths. A clear periodic variation of 3.3 hrs was found on 1 April 2008 and a hint for another possible periodic variability of 4 hrs was found on 31 March 2008. During our 30 days of observations over a 2 month period the source has varied with an amplitude of variability as large as ~80%.
82 - B. Rani 2013
We present the results of a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multi-frequency observations were obtained using several ground and space base d facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend at a time scale of ~350 days. Episodes of fast variability recur on time scales of ~ 60-70 days. The intense and simultaneous activity at optical and gamma-ray frequencies favors the SSC mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/gamma-ray activity period. The radio flares are characterized by a rising and a decaying stage and are in agreement with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield a robust and self-consistent lower limits of delta > 20 and equipartition magnetic field B_eq > 0.36 G. Causality arguments constrain the size of emission region theta < 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and gamma-rays. The optical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.
139 - B. Rani 2010
The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/o r the physical parameters of the jet. Meaningful modeling of blazar broadband spectra is required to understand the extreme conditions within the emission region. Not only is the broadband SED crucial, but also information about its variability is needed to understand how the highest states of emission occur and how they differ from the low states. This may help in discriminating between models. Here we present the results of our SED modeling of the blazar S5 0716+714 during various phases of its activity. The SEDs are classified into different bins depending on the optical brightness state of the source.
260 - U. Bach 2004
We present the results of a multi-frequency study of the structural evolution of the VLBI jet in the BL Lac object 0716+714 over the last 10 years. We show VLBI images obtained at 5 GHz, 8.4 GHz, 15 GHz and 22 GHz. The milliarcsecond source structure is best described by a one-sided core-dominated jet of ~10 mas length. Embedded jet components move superluminally with speeds ranging from 5 c to 16 c (assuming z=0.3). Such fast superluminal motion is not typical for BL Lac objects, however it is still in the range of jet speeds typically observed in quasars (10 c to 20 c). In 0716+714, younger components, that were ejected more recently, seem to move systematically slower than the older components. This and a systematic position angle variation of the inner (1 mas) portion of the VLBI jet, suggests an at least partly geometric origin of the observed velocity variations. The observed rapid motion and the derived Lorentz factors are discussed with regard to the rapid Intra-Day Variability (IDV) and the gamma-ray observations, from which very high Doppler factors are inferred.
The typical blazar S5 0716$+$714 is very interesting due to its rapid and large amplitude variability and high duty cycle of micro-variability in optical band. We analyze the observations in I, R and V bands obtained with the $1.0m$ telescope at Weih ai observatory of Shandong University from 2011 to 2018. The model of synchrotron radiation from turbulent cells in a jet has been proposed as a mechanism for explaining micro-variability seen in blazar light curves. Parameters such as the sizes of turbulent cells, the enhanced particle densities, and the location of the turbulent cells in the jet can be studied using this model. The model predicts a time lag between variations as observed in different frequency bands. Automatic model fitting method for micro-variability is developed, and the fitting results of our multi-frequency micro-variability observations support the model. The results show that both the amplitude and duration of flares decomposed from the micro-variability light curves confirm to the log-normal distribution. The turbulent cell size is within the range of about 5 to 55 AU, and the time lags of the micro-variability flares between the I-R and R-V bands should be several minutes. The time lags obtained from the turbulence model are consistent with the fitting statistical results, and the time lags of flares are correlated with the time lags of the whole light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا