ﻻ يوجد ملخص باللغة العربية
We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment. We prove that in the presence of noise causing false excitation, such as thermal noise, the quantum Fisher information of arbitrary quantum states for the separation of the objects, which quantifies the resolution, always converges to zero as the separation goes to zero. Noisy cases contrast with a noiseless case where it has been shown to be nonzero for a small distance in various circumstances, revealing the superresolution. In addition, we show that false excitation on an arbitrary measurement, such as dark counts, also makes the classical Fisher information of the measurement approach to zero as the separation goes to zero. Finally, a practically relevant situation resolving two identical thermal sources, is quantitatively investigated by using the quantum and classical Fisher information of finite spatial mode multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy system.
In this work we give a $(n,n)$-threshold protocol for sequential secret sharing of quantum information for the first time. By sequential secret sharing we refer to a situation where the dealer is not having all the secrets at the same time, at the
Partial teleportation of entanglement is to teleport one particle of an entangled pair through a quantum channel. This is conceptually equivalent to quantum swapping. We consider the partial teleportation of entanglement in the noisy environment, emp
We calculate the quantum Fisher information (QFI) for estimating, using a circular imaging aperture, the length of a uniformly bright incoherent line source with a fixed mid-point and the radius of a uniformly bright incoherent disk shaped source wit
We suggest overcoming the Rayleigh catastrophe and reaching superresolution for imaging with both spatially and temporally-correlated field of a superradiant quantum antenna. Considering far-field radiation of two interacting spontaneously emitting t
We consider the problem of estimating the spatial separation between two mutually incoherent point light sources using the super-resolution imaging technique based on spatial mode demultiplexing with noisy detectors. We show that in the presence of n