ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmology Intertwined III: $f sigma_8$ and $S_8$

90   0   0.0 ( 0 )
 نشر من قبل Eleonora Di Valentino
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard $Lambda$ Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few tensions and anomalies became statistically significant with the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension of the Planck data with weak lensing measurements and redshift surveys, about the value of the matter energy density $Omega_m$, and the amplitude or rate of the growth of structure ($sigma_8,fsigma_8$). We list a few interesting models for solving this tension, and we discuss the importance of trying to fit with a single model a full array of data and not just one parameter at a time.

قيم البحث

اقرأ أيضاً

The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f ew statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the $4.4sigma$ tension between the Planck estimate of the Hubble constant $H_0$ and the SH0ES collaboration measurements. After showing the $H_0$ evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting new physics models that could solve this tension and discuss how the next decade experiments will be crucial.
The standard $Lambda$ Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approx imation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant $H_0$ value, the $sigma_8 - S_8$ tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth, that will be of crucial importance to address all these questions.
A precise measurement of the curvature of the Universe is of primeval importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early Universe scenarios. The recent observations, while broadly consistent with a spatially flat standard $Lambda$ Cold Dark Matter ($Lambda$CDM) model, are showing tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be in action, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since a positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat $Lambda$CDM model.
Recent weak lensing surveys have revealed that the direct measurement of the parameter combination $S_8equivsigma_8(Omega_m/0.3)^{0.5}$ -- measuring the amplitude of matter fluctuations on 8 $h^{-1}$Mpc scales -- is $sim3sigma$ discrepant with the va lue reconstructed from cosmic microwave background (CMB) data assuming the $Lambda$CDM model. In this Letter, we show that it is possible to resolve the tension if dark matter (DM) decays with a lifetime of $text{log}_{10}(Gamma^{-1}/ text{Gyr})= 1.75_{-0.95}^{+1.4}$ into one massless and one massive product, and transfers a fraction $varepsilonsimeq 0.7^{+2.7}_{-0.6}%$ of its rest mass energy to the massless component. The velocity-kick received by the massive daughter leads to a suppression of gravitational clustering below its free-streaming length, thereby reducing the $sigma_8$ value as compared to that inferred from the standard $Lambda$CDM model, in a similar fashion to massive neutrino and standard warm DM. Contrarily to the latter scenarios, the time-dependence of the power suppression and the free-streaming scale allows the 2-body decaying DM scenario to accommodate CMB, baryon acoustic oscillation, growth factor and uncalibrated supernova Ia data. We briefly discuss implications for DM model building, galactic small-scale structure problems and the recent Xenon-1T excess. Future experiments measuring the growth factor to high accuracy at $0lesssim zlesssim1$ can further test this scenario.
We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes se lected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using $P_{rm cdm}(k)$ instead of $P_{rm m}(k)$, are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when $P_{rm cdm}(k)$ is considered rather than $P_{rm m}(k)$. As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as $30%$ for $sum m_ u = 0.4$ eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the $sigma_8(Omega_{rm m}/0.27)^gamma$ relation which can be quantified as $Delta gamma sim 0.05$ and $Delta gamma sim 0.14$ assuming one ($N_ u=1$) or three ($N_ u=3$) degenerate massive neutrino, respectively. The shift results in a lower mean value of $sigma_8$ with $Delta sigma_8 = 0.01$ for $N_ u=1$ and $Delta sigma_8 = 0.02$ for $N_ u=3$, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا