ترغب بنشر مسار تعليمي؟ اضغط هنا

Symplectic isotopy of rational cuspidal sextics and septics

108   0   0.0 ( 0 )
 نشر من قبل Fabien Kutle
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify rational cuspidal curves of degrees 6 and 7 in the complex projective plane, up to symplectic isotopy. The proof uses topological tools, pseudoholomorphic techniques, and birational transformations.



قيم البحث

اقرأ أيضاً

We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irr educible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to 5, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from 4-dimensional topology.
We give characterizations of a finite group $G$ acting symplectically on a rational surface ($mathbb{C}P^2$ blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of $G$-conic bundles versus $G$-del Pezzo surf aces for the corresponding $G$-rational surfaces, analogous to a classical result in algebraic geometry. Besides the characterizations of the group $G$ (which is completely determined for the case of $mathbb{C}P^2# Noverline{mathbb{C}P^2}$, $N=2,3,4$), we also investigate the equivariant symplectic minimality and equivariant symplectic cone of a given $G$-rational surface.
We study possible configurations of singular points occuring on general algebraic curves in $mathbb{C}P^2$ via Floer theory. To achieve this, we describe a general formula for the $H_{1}$-action on the knot Floer complex of the knotification of a lin k in $S^3$, in terms of natural actions on the link Floer complex of the original link. This result may be interest on its own.
For a positive integer $N$, let $mathscr{C}_N(mathbb{Q})$ be the rational cuspidal subgroup of $J_0(N)$ and $mathscr{C}(N)$ be the rational cuspidal divisor class group of $X_0(N)$, which are both subgroups of the rational torsion subgroup of $J_0(N) $. We prove that two groups $mathscr{C}_N(mathbb{Q})$ and $mathscr{C}(N)$ are equal when $N=p^2M$ for any prime $p$ and any squarefree integer $M$. To achieve this we show that all modular units on $X_0(N)$ can be written as products of certain functions $F_{m, h}$, which are constructed from generalized Dedekind eta functions. Also, we determine the necessary and sufficient conditions for such products to be modular units on $X_0(N)$ under a mild assumption.
A C-symplectic structure is a complex-valued 2-form which is holomorphically symplectic for an appropriate complex structure. We prove an analogue of Mosers isotopy theorem for families of C-symplectic structures and list several applications of this result. We prove that the degenerate twistorial deformation associated to a holomorphic Lagrangian fibration is locally trivial over the base of this fibration. This is used to extend several theorems about Lagrangian fibrations, known for projective hyperkahler manifolds, to the non-projective case. We also exhibit new examples of non-compact complex manifolds with infinitely many pairwise non-birational algebraic compactifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا