ﻻ يوجد ملخص باللغة العربية
We classify rational cuspidal curves of degrees 6 and 7 in the complex projective plane, up to symplectic isotopy. The proof uses topological tools, pseudoholomorphic techniques, and birational transformations.
We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irr
We give characterizations of a finite group $G$ acting symplectically on a rational surface ($mathbb{C}P^2$ blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of $G$-conic bundles versus $G$-del Pezzo surf
We study possible configurations of singular points occuring on general algebraic curves in $mathbb{C}P^2$ via Floer theory. To achieve this, we describe a general formula for the $H_{1}$-action on the knot Floer complex of the knotification of a lin
For a positive integer $N$, let $mathscr{C}_N(mathbb{Q})$ be the rational cuspidal subgroup of $J_0(N)$ and $mathscr{C}(N)$ be the rational cuspidal divisor class group of $X_0(N)$, which are both subgroups of the rational torsion subgroup of $J_0(N)
A C-symplectic structure is a complex-valued 2-form which is holomorphically symplectic for an appropriate complex structure. We prove an analogue of Mosers isotopy theorem for families of C-symplectic structures and list several applications of this