ترغب بنشر مسار تعليمي؟ اضغط هنا

Policy Implications of Statistical Estimates: A General Bayesian Decision-Theoretic Model for Binary Outcomes

111   0   0.0 ( 0 )
 نشر من قبل Akisato Suzuki Dr
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Akisato Suzuki




اسأل ChatGPT حول البحث

How should we evaluate a policys effect on the likelihood of an undesirable event, such as conflict? The conventional practice has three limitations. First, relying on statistical significance misses the fact that uncertainty is a continuous scale. Second, focusing on a standard point estimate overlooks a variation in plausible effect sizes. Third, the criterion of substantive significance is rarely explained or justified. To overcome these, my Bayesian decision-theoretic model compares the expected loss under a policy intervention with the one under no such intervention. These losses are computed as a function of a particular effect size, the probability of this effect being realized, and the ratio of the cost of an intervention to the cost of an undesirable event. The model is more practically interpretable than common statistical decision-theoretic models using the standard loss functions or the relative costs of false positives and false negatives. I exemplify my models use through three applications and provide an R package.



قيم البحث

اقرأ أيضاً

One of the main goals of sequential, multiple assignment, randomized trials (SMART) is to find the most efficacious design embedded dynamic treatment regimes. The analysis method known as multiple comparisons with the best (MCB) allows comparison bet ween dynamic treatment regimes and identification of a set of optimal regimes in the frequentist setting for continuous outcomes, thereby, directly addressing the main goal of a SMART. In this paper, we develop a Bayesian generalization to MCB for SMARTs with binary outcomes. Furthermore, we show how to choose the sample size so that the inferior embedded DTRs are screened out with a specified power. We compare log-odds between different DTRs using their exact distribution without relying on asymptotic normality in either the analysis or the power calculation. We conduct extensive simulation studies under two SMART designs and illustrate our methods application to the Adaptive Treatment for Alcohol and Cocaine Dependence (ENGAGE) trial.
We introduce a numerically tractable formulation of Bayesian joint models for longitudinal and survival data. The longitudinal process is modelled using generalised linear mixed models, while the survival process is modelled using a parametric genera l hazard structure. The two processes are linked by sharing fixed and random effects, separating the effects that play a role at the time scale from those that affect the hazard scale. This strategy allows for the inclusion of non-linear and time-dependent effects while avoiding the need for numerical integration, which facilitates the implementation of the proposed joint model. We explore the use of flexible parametric distributions for modelling the baseline hazard function which can capture the basic shapes of interest in practice. We discuss prior elicitation based on the interpretation of the parameters. We present an extensive simulation study, where we analyse the inferential properties of the proposed models, and illustrate the trade-off between flexibility, sample size, and censoring. We also apply our proposal to two real data applications in order to demonstrate the adaptability of our formulation both in univariate time-to-event data and in a competing risks framework. The methodology is implemented in rstan.
We develop Bayesian models for density regression with emphasis on discrete outcomes. The problem of density regression is approached by considering methods for multivariate density estimation of mixed scale variables, and obtaining conditional densi ties from the multivariate ones. The approach to multivariate mixed scale outcome density estimation that we describe represents discrete variables, either responses or covariates, as discretis
In employing spatial regression models for counts, we usually meet two issues. First, ignoring the inherent collinearity between covariates and the spatial effect would lead to causal inferences. Second, real count data usually reveal over or under-d ispersion where the classical Poisson model is not appropriate to use. We propose a flexible Bayesian hierarchical modeling approach by joining non-confounding spatial methodology and a newly reconsidered dispersed count modeling from the renewal theory to control the issues. Specifically, we extend the methodology for analyzing spatial count data based on the gamma distribution assumption for waiting times. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation using the integrated nested Laplace approximation method. We also examine different popular approaches for handling spatial confounding and compare their performances in the presence of dispersion. We use the proposed methodology to analyze a clinical dataset related to stomach cancer incidence in Slovenia and perform a simulation study to understand the proposed approachs merits better.
85 - Hangjin Jiang 2020
Statistical modeling plays a fundamental role in understanding the underlying mechanism of massive data (statistical inference) and predicting the future (statistical prediction). Although all models are wrong, researchers try their best to make some of them be useful. The question here is how can we measure the usefulness of a statistical model for the data in hand? This is key to statistical prediction. The important statistical problem of testing whether the observations follow the proposed statistical model has only attracted relatively few attentions. In this paper, we proposed a new framework for this problem through building its connection with two-sample distribution comparison. The proposed method can be applied to evaluate a wide range of models. Examples are given to show the performance of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا