ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Brill--Noether Theory over the Hurwitz Space

145   0   0.0 ( 0 )
 نشر من قبل Eric Larson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $C$ be a curve of genus $g$. A fundamental problem in the theory of algebraic curves is to understand maps $C to mathbb{P}^r$ of specified degree $d$. When $C$ is general, the moduli space of such maps is well-understood by the main theorems of Brill--Noether theory. Despite much study over the past three decades, a similarly complete picture has proved elusive for curves of fixed gonality. Here we complete such a picture, by proving analogs of all of the main theorems of Brill--Noether theory in this setting. As a corollary, we prove a conjecture of Eisenbud and Schreyer regarding versal deformation spaces of vector bundles on $mathbb{P}^1$.



قيم البحث

اقرأ أيضاً

We compute the integral cohomology groups of the smooth Brill-Noether varieties $G^r_d(C)$, parametrizing linear series of degree $d$ and dimension exactly $r$ on a general curve $C$. As an application, we determine the whole intersection cohomology of the singular Brill-Noether loci $W^r_d(C)$, parametrizing complete linear series on $C$ of degree $d$ and dimension at least $r$.
90 - Luigi Pagano 2018
We slightly extend a previous result concerning the injectivity of a map of moduli spaces and we use this result to construct curves whose Brill-Noether loci have unexpected dimension.
In this paper we consider the Brill-Noether locus $W_{underline d}(C)$ of line bundles of multidegree $underline d$ of total degree $g-1$ having a nonzero section on a nodal reducible curve $C$ of genus $ggeq2$. We give an explicit description of the irreducible components of $W_{underline d}(C)$ for a semistable multidegre $underline d$. As a consequence we show that, if two semistable multidegrees of total degre $g-1$ on a curve with no rational components differ by a twister, then the respective Brill-Noether loci have isomorphic components.
77 - Irene I. Bouw 2002
We compute the stable reduction of some Galois covers of the projective line branched at three points. These covers are constructed using Hurwitz spaces parameterizing metacyclic covers. The reduction is determined by a hypergeometric differential eq uation. This generalizes the result of Deligne- Rapoport on the reduction of the modular curve X(p).
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold tot al space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا