ﻻ يوجد ملخص باللغة العربية
Using a sample of nearly 140,000 primary red clump stars selected from the LAMOST and $Gaia$ surveys, we have identified a large sample of young [$alpha$/Fe]-enhanced stars with stellar ages younger than 6.0 Gyr and [$alpha$/Fe] ratios greater than 0.15 dex. The stellar ages and [$alpha$/Fe] ratios are measured from LAMOST spectra, using a machine learning method trained with common stars in the LAMOST-APOGEE fields (for [$alpha$/Fe]) and in the LAMOST-$Kepler$ fields (for stellar age). The existence of these young [$alpha$/Fe]-enhanced stars is not expected from the classical Galactic chemical evolution models. To explore their possible origins, we have analyzed the spatial distribution, and the chemical and kinematic properties of those stars and compared the results with those of the chemically thin and thick disk populations. We find that those young [$alpha$/Fe]-enhanced stars have distributions in number density, metallicity, [C/N] abundance ratio, velocity dispersion and orbital eccentricity that are essentially the same as those of the chemically thick disk population. Our results clearly show those so-called young [$alpha$/Fe]-enhanced stars are not really young but $genuinely$ $old$. Although other alternative explanations can not be fully ruled out, our results suggest that the most possible origin of these old stars is the result of stellar mergers or mass transfer.
We present a sample of $sim$ 140,000 primary red clump (RC) stars of spectral signal-to-noise ratios higher than 20 from the LAMOST Galactic spectroscopic surveys, selected based on their positions in the metallicity-dependent effective temperature--
Using a sample of 96,201 primary red clump (RC) stars selected from the LAMOST and Gaia surveys, we investigate the stellar structure of the Galactic disk. The sample stars show two separated sequences of high-[{alpha}/Fe] and low-[{alpha}/Fe] in the
We perform analysis of the three-dimensional kinematics of Milky Way disk stars in mono-age populations. We focus on stars between Galactocentric distances of $R=6$ and 14 ,kpc, selected from the combined LAMOST DR4 red clump giant stars and Gaia DR2
We investigate the three-dimensional asymmetrical kinematics and present time stamps of the Milky Way disk between Galactocentric distances of $R=12$ and 15 ,kpc, using red clump stars selected from the LAMOST Galactic survey, also with proper motion
By combining LAMOST DR4 and Gaia DR2 common red clump stars with age and proper motion, we analyze the amplitude evolution of the stellar warp independently of any assumption with a simple model. The greatest height of the warp disk increases with Ga