ترغب بنشر مسار تعليمي؟ اضغط هنا

An Alternative Method for Extracting the von Neumann Entropy from Renyi Entropies

87   0   0.0 ( 0 )
 نشر من قبل Chih-Hung Wu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An alternative method is presented for extracting the von Neumann entropy $-operatorname{Tr} (rho ln rho)$ from $operatorname{Tr} (rho^n)$ for integer $n$ in a quantum system with density matrix $rho$. Instead of relying on direct analytic continuation in $n$, the method uses a generating function $-operatorname{Tr} { rho ln [(1-z rho) / (1-z)] }$ of an auxiliary complex variable $z$. The generating function has a Taylor series that is absolutely convergent within $|z|<1$, and may be analytically continued in $z$ to $z = -infty$ where it gives the von Neumann entropy. As an example, we use the method to calculate analytically the CFT entanglement entropy of two intervals in the small cross ratio limit, reproducing a result that Calabrese et al. obtained by direct analytic continuation in $n$. Further examples are provided by numerical calculations of the entanglement entropy of two intervals for general cross ratios, and of one interval at finite temperature and finite interval length.



قيم البحث

اقرأ أيضاً

We conjecture that all connected graphs of order $n$ have von Neumann entropy at least as great as the star $K_{1,n-1}$ and prove this for almost all graphs of order $n$. We show that connected graphs of order $n$ have Renyi 2-entropy at least as gre at as $K_{1,n-1}$ and for $alpha>1$, $K_n$ maximizes Renyi $alpha$-entropy over graphs of order $n$. We show that adding an edge to a graph can lower its von Neumann entropy.
The R{e}nyi and von Neumann entropies of the thermal state in the generalized uncertainty principle (GUP)-corrected single harmonic oscillator system are explicitly computed within the first order of the GUP parameter $alpha$. While the von Neumann e ntropy with $alpha = 0$ exhibits a monotonically increasing behavior in external temperature, the nonzero GUP parameter makes the decreasing behavior of the von Neumann entropy at the large temperature region. As a result, the von Neumann entropy is maximized at the finite temperature if $alpha eq 0$. The R{e}nyi entropy $S_{gamma}$ with nonzero $alpha$ also exhibits similar behavior at the large temperature region. In this region the R{e}nyi entropy exhibit decreasing behavior with increasing the temperature. The decreasing rate becomes larger when the order of the R{e}nyi entropy $gamma$ is smaller.
We construct a new class of entanglement measures by extending the usual definition of Renyi entropy to include a chemical potential. These charged Renyi entropies measure the degree of entanglement in different charge sectors of the theory and are g iven by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFTs with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Renyi entropies in free field theories.
We present a method to measure the von Neumann entanglement entropy of ground states of quantum many-body systems which does not require access to the system wave function. The technique is based on a direct thermodynamic study of entanglement Hamilt onians, whose functional form is available from field theoretical insights. The method is applicable to classical simulations such as quantum Monte Carlo methods, and to experiments that allow for thermodynamic measurements such as the density of states, accessible via quantum quenches. We benchmark our technique on critical quantum spin chains, and apply it to several two-dimensional quantum magnets, where we are able to unambiguously determine the onset of area law in the entanglement entropy, the number of Goldstone bosons, and to check a recent conjecture on geometric entanglement contribution at critical points described by strongly coupled field theories.
271 - DaeKil Park 2019
The R{e}nyi and von Neumann entropies of various bipartite Gaussian states are derived analytically. We also discuss on the tripartite purification for the bipartite states when some particular conditions hold. The generalization to non-Gaussian states is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا