ﻻ يوجد ملخص باللغة العربية
Instance segmentation has witnessed a remarkable progress on class-balanced benchmarks. However, they fail to perform as accurately in real-world scenarios, where the category distribution of objects naturally comes with a long tail. Instances of head classes dominate a long-tailed dataset and they serve as negative samples of tail categories. The overwhelming gradients of negative samples on tail classes lead to a biased learning process for classifiers. Consequently, objects of tail categories are more likely to be misclassified as backgrounds or head categories. To tackle this problem, we propose Seesaw Loss to dynamically re-balance gradients of positive and negative samples for each category, with two complementary factors, i.e., mitigation factor and compensation factor. The mitigation factor reduces punishments to tail categories w.r.t. the ratio of cumulative training instances between different categories. Meanwhile, the compensation factor increases the penalty of misclassified instances to avoid false positives of tail categories. We conduct extensive experiments on Seesaw Loss with mainstream frameworks and different data sampling strategies. With a simple end-to-end training pipeline, Seesaw Loss obtains significant gains over Cross-Entropy Loss, and achieves state-of-the-art performance on LVIS dataset without bells and whistles. Code is available at https://github.com/open-mmlab/mmdetection.
Vanilla models for object detection and instance segmentation suffer from the heavy bias toward detecting frequent objects in the long-tailed setting. Existing methods address this issue mostly during training, e.g., by re-sampling or re-weighting. I
Data in the real world tends to exhibit a long-tailed label distribution, which poses great challenges for neural networks in classification. Existing methods tackle this problem mainly from the coarse-grained class level, ignoring the difference amo
Long-tailed class distributions are prevalent among the practical applications of object detection and instance segmentation. Prior work in long-tail instance segmentation addresses the imbalance of losses between rare and frequent categories by redu
In this paper, we propose a progressive margin loss (PML) approach for unconstrained facial age classification. Conventional methods make strong assumption on that each class owns adequate instances to outline its data distribution, likely leading to
Deep models trained on long-tailed datasets exhibit unsatisfactory performance on tail classes. Existing methods usually modify the classification loss to increase the learning focus on tail classes, which unexpectedly sacrifice the performance on he