ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter Estimation for Undirected Graphical Models with Hard Constraints

71   0   0.0 ( 0 )
 نشر من قبل Bhaswar Bhattacharya
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The hardcore model on a graph $G$ with parameter $lambda>0$ is a probability measure on the collection of all independent sets of $G$, that assigns to each independent set $I$ a probability proportional to $lambda^{|I|}$. In this paper we consider the problem of estimating the parameter $lambda$ given a single sample from the hardcore model on a graph $G$. To bypass the computational intractability of the maximum likelihood method, we use the maximum pseudo-likelihood (MPL) estimator, which for the hardcore model has a surprisingly simple closed form expression. We show that for any sequence of graphs ${G_N}_{Ngeq 1}$, where $G_N$ is a graph on $N$ vertices, the MPL estimate of $lambda$ is $sqrt N$-consistent, whenever the graph sequence has uniformly bounded average degree. We then derive sufficient conditions under which the MPL estimate of the activity parameters is $sqrt N$-consistent given a single sample from a general $H$-coloring model, in which restrictions between adjacent colors are encoded by a constraint graph $H$. We verify the sufficient conditions for models where there is at least one unconstrained color as long as the graph sequence has uniformly bounded average degree. This applies to many $H$-coloring examples such as the Widom-Rowlinson and multi-state hard-core models. On the other hand, for the $q$-coloring model, which falls outside this class, we show that consistent estimation may be impossible even for graphs with bounded average degree. Nevertheless, we show that the MPL estimate is $sqrt N$-consistent in the $q$-coloring model when ${G_N}_{Ngeq 1}$ has bounded average double neighborhood. The presence of hard constraints, as opposed to soft constraints, leads to new challenges, and our proofs entail applications of the method of exchangeable pairs as well as combinatorial arguments that employ the probabilistic method.



قيم البحث

اقرأ أيضاً

We consider sampling and enumeration problems for Markov equivalence classes. We create and analyze a Markov chain for uniform random sampling on the DAGs inside a Markov equivalence class. Though the worst case is exponentially slow mixing, we find a condition on the Markov equivalence class for polynomial time mixing. We also investigate the ratio of Markov equivalence classes to DAGs and a Markov chain of He, Jia, and Yu for random sampling of sparse Markov equivalence classes.
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood (GEL). We treat the problems of existence and characterization of the divergence projections of probability measures on sets of signed finite measures. Our approach allows for a study of the estimates under misspecification. The asymptotic behavior of the proposed estimates are studied using the dual representation of the divergences and the explicit forms of the divergence projections. We discuss the problem of the choice of the divergence under various respects. Also we handle efficiency and robustness properties of minimum divergence estimates. A simulation study shows that the Hellinger divergence enjoys good efficiency and robustness properties.
Bayesian learning in undirected graphical models|computing posterior distributions over parameters and predictive quantities is exceptionally difficult. We conjecture that for general undirected models, there are no tractable MCMC (Markov Chain Monte Carlo) schemes giving the correct equilibrium distribution over parameters. While this intractability, due to the partition function, is familiar to those performing parameter optimisation, Bayesian learning of posterior distributions over undirected model parameters has been unexplored and poses novel challenges. we propose several approximate MCMC schemes and test on fully observed binary models (Boltzmann machines) for a small coronary heart disease data set and larger artificial systems. While approximations must perform well on the model, their interaction with the sampling scheme is also important. Samplers based on variational mean- field approximations generally performed poorly, more advanced methods using loopy propagation, brief sampling and stochastic dynamics lead to acceptable parameter posteriors. Finally, we demonstrate these techniques on a Markov random field with hidden variables.
We develop a general framework for MAP estimation in discrete and Gaussian graphical models using Lagrangian relaxation techniques. The key idea is to reformulate an intractable estimation problem as one defined on a more tractable graph, but subject to additional constraints. Relaxing these constraints gives a tractable dual problem, one defined by a thin graph, which is then optimized by an iterative procedure. When this iterative optimization leads to a consistent estimate, one which also satisfies the constraints, then it corresponds to an optimal MAP estimate of the original model. Otherwise there is a ``duality gap, and we obtain a bound on the optimal solution. Thus, our approach combines convex optimization with dynamic programming techniques applicable for thin graphs. The popular tree-reweighted max-product (TRMP) method may be seen as solving a particular class of such relaxations, where the intractable graph is relaxed to a set of spanning trees. We also consider relaxations to a set of small induced subgraphs, thin subgraphs (e.g. loops), and a connected tree obtained by ``unwinding cycles. In addition, we propose a new class of multiscale relaxations that introduce ``summary variables. The potential benefits of such generalizations include: reducing or eliminating the ``duality gap in hard problems, reducing the number or Lagrange multipliers in the dual problem, and accelerating convergence of the iterative optimization procedure.
281 - Anthony Reveillac 2008
In this paper we give a central limit theorem for the weighted quadratic variations process of a two-parameter Brownian motion. As an application, we show that the discretized quadratic variations $sum_{i=1}^{[n s]} sum_{j=1}^{[n t]} | Delta_{i,j} Y |^2$ of a two-parameter diffusion $Y=(Y_{(s,t)})_{(s,t)in[0,1]^2}$ observed on a regular grid $G_n$ is an asymptotically normal estimator of the quadratic variation of $Y$ as $n$ goes to infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا