ﻻ يوجد ملخص باللغة العربية
The hardcore model on a graph $G$ with parameter $lambda>0$ is a probability measure on the collection of all independent sets of $G$, that assigns to each independent set $I$ a probability proportional to $lambda^{|I|}$. In this paper we consider the problem of estimating the parameter $lambda$ given a single sample from the hardcore model on a graph $G$. To bypass the computational intractability of the maximum likelihood method, we use the maximum pseudo-likelihood (MPL) estimator, which for the hardcore model has a surprisingly simple closed form expression. We show that for any sequence of graphs ${G_N}_{Ngeq 1}$, where $G_N$ is a graph on $N$ vertices, the MPL estimate of $lambda$ is $sqrt N$-consistent, whenever the graph sequence has uniformly bounded average degree. We then derive sufficient conditions under which the MPL estimate of the activity parameters is $sqrt N$-consistent given a single sample from a general $H$-coloring model, in which restrictions between adjacent colors are encoded by a constraint graph $H$. We verify the sufficient conditions for models where there is at least one unconstrained color as long as the graph sequence has uniformly bounded average degree. This applies to many $H$-coloring examples such as the Widom-Rowlinson and multi-state hard-core models. On the other hand, for the $q$-coloring model, which falls outside this class, we show that consistent estimation may be impossible even for graphs with bounded average degree. Nevertheless, we show that the MPL estimate is $sqrt N$-consistent in the $q$-coloring model when ${G_N}_{Ngeq 1}$ has bounded average double neighborhood. The presence of hard constraints, as opposed to soft constraints, leads to new challenges, and our proofs entail applications of the method of exchangeable pairs as well as combinatorial arguments that employ the probabilistic method.
We consider sampling and enumeration problems for Markov equivalence classes. We create and analyze a Markov chain for uniform random sampling on the DAGs inside a Markov equivalence class. Though the worst case is exponentially slow mixing, we find
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL)
Bayesian learning in undirected graphical models|computing posterior distributions over parameters and predictive quantities is exceptionally difficult. We conjecture that for general undirected models, there are no tractable MCMC (Markov Chain Monte
We develop a general framework for MAP estimation in discrete and Gaussian graphical models using Lagrangian relaxation techniques. The key idea is to reformulate an intractable estimation problem as one defined on a more tractable graph, but subject
In this paper we give a central limit theorem for the weighted quadratic variations process of a two-parameter Brownian motion. As an application, we show that the discretized quadratic variations $sum_{i=1}^{[n s]} sum_{j=1}^{[n t]} | Delta_{i,j} Y