ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of 18 stars with -3.10 < [Fe/H] < -1.45 in the Sagittarius dwarf galaxy

49   0   0.0 ( 0 )
 نشر من قبل Anirudh Chiti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of the early chemical evolution of some larger dwarf galaxies ( $>10^7$ solar masses) are limited by the small number of stars known at low metallicities in these systems. Here we present metallicities and carbon abundances for eighteen stars with metallicities between $-3.08 le text{[Fe/H]} le -1.47$ in the Sagittarius dwarf spheroidal galaxy, using medium-resolution spectra from the MagE spectrograph on the Magellan-Baade Telescope. This sample more than doubles the number of known very metal-poor stars ([Fe/H] $leq -2.0$) in the Sagittarius dwarf galaxy, and identifies one of the first known extremely metal-poor stars ([Fe/H] $leq -3.0$) in the system. These stars were identified as likely metal-poor members of Sagittarius using public, metallicity-sensitive photometry from SkyMapper DR1.1 and proper motion data from Gaia DR2, demonstrating that this dearth of metal-poor stars in some dwarf galaxies can be addressed with targeted searches using public data. We find that none of the stars in our sample are enhanced in carbon, in contrast to the relative prevalence of such stars in the Milky Way halo. Subsequent high-resolution spectroscopy of these stars would be key in detailing the early chemical evolution of the system.

قيم البحث

اقرأ أيضاً

Context. Globular clusters (GCs) are witnesses of the past accretion events onto the Milky Way (MW). In particular, the GCs of the Sagittarius (Sgr) dwarf galaxy are important probes of an on-going merger. Aims. Our main goal is to search for new GC members of this dwarf galaxy using the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared database combined with the Gaia Early Data Release 3 (EDR3) optical database. Methods. We investigated all VVVX-enabled discoveries of GC candidates in a region covering about 180 sq. deg. toward the bulge and the Sgr dwarf galaxy. We used multiband point-spread function photometry to obtain deep color-magnitude diagrams (CMDs) and luminosity functions (LFs) for all GC candidates, complemented by accurate Gaia-EDR3 proper motions (PMs) to select Sgr members and variability information to select RR Lyrae which are potential GC members. Results. After applying a strict PM cut to discard foreground bulge and disk stars, the CMDs and LFs for some of the GC candidates exhibit well defined red giant branches and red clump giant star peaks. We selected the best Sgr GCs, estimating their distances, reddenings, and associated RR Lyrae. Conclusions. We discover 12 new Sgr GC members, more than doubling the number of GCs known in this dwarf galaxy. In addition, there are 11 other GC candidates identified that are uncertain, awaiting better data for confirmation.
153 - Anirudh Chiti , Anna Frebel 2019
We present the metallicities and carbon abundances of four newly discovered metal-poor stars with $ -2.2 <$ [Fe/H] $< -1.6$ in the Sagittarius dwarf spheroidal galaxy. These stars were selected as metal-poor member candidates using a combination of p ublic photometry from the SkyMapper Southern Sky Survey and proper motion data from the second data release from the Gaia mission. The SkyMapper filters include a metallicity-sensitive narrow-band $v$ filter centered on the Ca II K line, which we use to identify metal-poor candidates. In tandem, we use proper motion data to remove metal-poor stars that are not velocity members of the Sagittarius dwarf spheroidal galaxy. We find that these two datasets allow for efficient identification of metal-poor members of the Sagittarius dwarf galaxy to follow-up with further spectroscopic study. Two of the stars we present have [Fe/H] $< -2.0$, which adds to the few other such stars currently identified in the Sagittarius dwarf galaxy that are likely not associated with the globular cluster M54, which resides in the nucleus of the system. Our results confirm that there exists a very metal-poor stellar population in the Sagittarius dwarf galaxy. We find that none of our stars can be classified as carbon-enhanced metal-poor stars. Efficiently identifying members of this population will be helpful to further our understanding of the early chemical evolution of the system.
What is the mass of the progenitor of the Sagittarius (Sgr) dwarf galaxy? Here, we reassemble the stellar debris using SDSS and 2MASS data to find the total luminosity and likely mass. We find that the luminosity is in the range 9.6-13.2 x10^7 solar luminosities or M_V ~ -15.1 - 15.5, with 70% of the light residing in the debris streams. The progenitor is somewhat fainter than the present-day Small Magellanic Cloud, and comparable in brightness to the M31 dwarf spheroidals NGC 147 and NGC 185. Using cosmologically motivated models, we estimate that the mass of Sgrs dark matter halo prior to tidal disruption was ~10^10 solar masses.
We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal (dSph) galaxy. We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the $I_{rm c }$ band show large-amplitude (3.7 and 0.9 mag) and long-period ($326pm 15$ and $122pm 5$ days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras ($75.3^{+12.8}_{-10.9}$ and $79.8^{+11.5}_{-9.9}$ kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph ($90.0pm 10.0$ kpc). These are the first Miras found in a stellar system with a metallicity as low as ${rm [Fe/H]sim -1.9}$, than any other known system with Miras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا