ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyapunov exponent in the Vicsek model

208   0   0.0 ( 0 )
 نشر من قبل Luciano Hugo Miranda Filho
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surprisingly, there is no direct measure of the chaotic behavior of such systems. Here, we discuss the dynamical phase transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically computed by following the dynamical evolution in tangent space for up to one million SPPs. As discontinuities in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We find that there is chaotic behavior in the disordered phase, which supports the claim that the LLE can be useful as an indicator of phase transitions even for this out-of-equilibrium system.

قيم البحث

اقرأ أيضاً

Collective behavior, both in real biological systems as well as in theoretical models, often displays a rich combination of different kinds of order. A clear-cut and unique definition of phase based on the standard concept of order parameter may ther efore be complicated, and made even trickier by the lack of thermodynamic equilibrium. Compression-based entropies have been proved useful in recent years in describing the different phases of out-of-equilibrium systems. Here, we investigate the performance of a compression-based entropy, namely the Computable Information Density (CID), within the Vicsek model of collective motion. Our entropy is defined through a crude coarse-graining of the particle positions, in which the key role of velocities in the model only enters indirectly through the velocity-density coupling. We discover that such entropy is a valid tool in distinguishing the various noise regimes, including the crossover between an aligned and misaligned phase of the velocities, despite the fact that velocities are not used by this entropy. Furthermore, we unveil the subtle role of the time coordinate, unexplored in previous studies on the CID: a new encoding recipe, where space and time locality are both preserved on the same ground, is demonstrated to reduce the CID. Such an improvement is particularly significant when working with partial and/or corrupted data, as it is often the case in real biological experiments.
The Vicsek model (Vicsek et al. 1995) is a very popular minimalist model to study active matter with a number of applications to biological systems at different length scales. With its off-lattice implementation and the periodic boundary conditions, it aims at the analysis of bulk behaviour of a limited number of particles. To expand the applicability of the model to further biological systems, we introduce an on-lattice implementation and analyse its behaviour for three different geometries with reflective boundary conditions. For sufficiently fine lattices, the model behaviour does not differ between off-lattice and on-lattice implementation. The reflective boundary conditions introduce an alignment of the particles with the boundary for low levels of noise. Numerical sensitivity analysis of the swarming behaviour results in a detailed characterisation of the Vicsek model for confined geometries with reflective boundary conditions. In a channel geometry, the boundary alignment causes swarms to move along the channel. In a box, the edges act as swarm traps and the trapping shows a discontinuous noise dependence. In a disk geometry, an ordered rotational state arises. This state is well described by a novel order parameter. These results provide the basis for applications of the Vicsek model to biological questions involving large particle numbers in confined environments.
78 - Takeshi Morita 2018
Classical particle motions in an inverse harmonic potential show the exponential sensitivity to initial conditions, where the Lyapunov exponent $lambda_L$ is uniquely fixed by the shape of the potential. Hence, if we naively apply the bound on the Ly apunov exponent $lambda_L le 2pi T/ hbar$ to this system, it predicts the existence of the bound on temperature (the lowest temperature) $T ge hbar lambda_L/ 2pi$ and the system cannot be taken to be zero temperature when $hbar eq 0$. This seems a puzzle because particle motions in an inverse harmonic potential should be realized without introducing any temperature but this inequality does not allow it. In this article, we study this problem in $N$ non-relativistic free fermions in an inverse harmonic potential ($c=1$ matrix model). We find that thermal radiation is {em induced} when we consider the system in a semi-classical regime even though the system is not thermal at the classical level. This is analogous to the thermal radiation of black holes, which are classically non-thermal but behave as thermal baths quantum mechanically. We also show that the temperature of the radiation in our model saturates the inequality, and thus, the system saturates the bound on the Lyapunov exponent, although the system is free and integrable. Besides, this radiation is related to acoustic Hawking radiation of the fermi fluid.
The characteristic (Laplace or Levy) exponents uniquely characterize infinitely divisible probability distributions. Although of purely mathematical origin they appear to be uniquely associated with the memory functions present in evolution equations which govern the course of such physical phenomena like non-Debye relaxations or anomalous diffusion. Commonly accepted procedure to mimic memory effects is to make basic equations time smeared, i.e., nonlocal in time. This is modeled either through the convolution of memory functions with those describing relaxation/diffusion or, alternatively, through the time smearing of time derivatives. Intuitive expectations say that such introduced time smearings should be physically equivalent. This leads to the conclusion that both kinds of so far introduced memory functions form a twin structure familiar to mathematicians for a long time and known as the Sonine pair. As an illustration of the proposed scheme we consider the excess wings model of non-Debye relaxations, determine its evolution equations and discuss properties of the solutions.
We show that the dissipation rate bounds the rate at which physical processes can be performed in stochastic systems far from equilibrium. Namely, for rare processes we prove the fundamental tradeoff $langle dot S_text{e} rangle mathcal{T} geq k_{tex t{B}} $ between the entropy flow $langle dot S_text{e} rangle$ into the reservoirs and the mean time $mathcal{T}$ to complete a process. This dissipation-time uncertainty relation is a novel form of speed limit: the smaller the dissipation, the larger the time to perform a process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا