ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Nuclear-Spin Effects in Atoms: EFT Methods for Reducing Theory Errors

92   0   0.0 ( 0 )
 نشر من قبل Laszlo Zalavari
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use effective field theory to compute the influence of nuclear structure on precision calculations of atomic energy levels. As usual, the EFTs effective couplings correspond to the various nuclear properties (such as the charge radius, nuclear polarizabilities, Friar and Zemach moments {it etc.}) that dominate its low-energy electromagnetic influence on its surroundings. By extending to spinning nuclei the arguments developed for spinless ones in {tt arXiv:1708.09768}, we use the EFT to show -- to any fixed order in $Zalpha$ (where $Z$ is the atomic number and $alpha$ the fine-structure constant) and the ratio of nuclear to atomic size -- that nuclear properties actually contribute to electronic energies through fewer parameters than the number of these effective nuclear couplings naively suggests. Our result is derived using a position-space method for matching effective parameters to nuclear properties in the EFT, that more efficiently exploits the simplicity of the small-nucleus limit in atomic systems. By showing that precision calculations of atomic spectra depend on fewer nuclear uncertainties than naively expected, this observation allows the construction of many nucleus-independent combinations of atomic energy differences whose measurement can be used to test fundamental physics (such as the predictions of QED) because their theoretical uncertainties are not limited by the accuracy of nuclear calculations. We provide several simple examples of such nucleus-free predictions for Hydrogen-like atoms.



قيم البحث

اقرأ أيضاً

Nuclear-structure effects often provide an irreducible theory error that prevents using precision atomic measurements to test fundamental theory. We apply newly developed effective field theory tools to Hydrogen atoms, and use them to show that (to t he accuracy of present measurements) all nuclear finite-size effects (e.g. the charge radius, Friar moments, nuclear polarizabilities, recoil corrections, Zemach moments {it etc.}) only enter into atomic energies through exactly two parameters, independent of any nuclear-modelling uncertainties. Since precise measurements are available for more than two atomic levels in Hydrogen, this observation allows the use of precision atomic measurements to eliminate the theory error associated with nuclear matrix elements. We apply this reasoning to the seven atomic measurements whose experimental accuracy is smaller than 10 kHz to provide predictions for nuclear-size effects whose theoretical accuracy is not subject to nuclear-modelling uncertainties and so are much smaller than 1 kHz. Furthermore, the accuracy of these predictions can improve as atomic measurements improve, allowing precision fundamental tests to become possible well below the irreducible error floor of nuclear theory.
We present the complete first order relativistic quantum kinetic theory with spin for massive fermions derived from the Wigner function formalism in a concise form that shows explicitly how the 32 Wigner equations reduce to 4 independent transport eq uations. We solve modified on-shell conditions to obtain the general solution and present the corresponding transport equations in three different forms that are suitable for different purposes. We demonstrate how different spin effects arise from the kinetic theory by calculating the chiral separation effect with mass correction, the chiral anomaly from the axial current and the quantum magnetic moment density induced by vorticity and magnetic field. We also show how to generate the global polarization effect due to spin vorticity coupling. The formalism presented may serve as a practical theoretical framework to study different spin effects in relativistic fermion systems encountered in different areas such as heavy ion, astro-particle and condensed matter physics as well.
We simplify the one-loop functional matching formalism to develop a streamlined prescription. The functional approach is conceptually appealing: all calculations are performed within the UV theory at the matching scale, and no prior determination of an Effective Field Theory (EFT) operator basis is required. Our prescription accommodates any relativistic UV theory that contains generic interactions (including derivative couplings) among scalar, fermion, and vector fields. As an example application, we match the singlet scalar extended Standard Model (SM) onto SMEFT.
This paper presents STrEAM (SuperTrace Evaluation Automated for Matching), a Mathematica package that calculates all functional supertraces which arise when matching a generic UV model onto a relativistic Effective Field Theory (EFT) at one loop and to arbitrary order in the heavy mass expansion. STrEAM implements the covariant derivative expansion to automate the most tedious step of the streamlined functional matching prescription presented in arXiv:2011.02484 . The code and an example notebook are available at https://www.github.com/EFTMatching/STrEAM .
405 - Nico Klein , Dean Lee , Weitao Liu 2015
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that regularization methods known from the continuum formulation are necessary as well as feasible for the pionful approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا