ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of Shape Derivatives using CutFEM for Ill-posed Bernoulli Free Boundary Problem

53   0   0.0 ( 0 )
 نشر من قبل Cuiyu He
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we discuss a level set approach for the identification of an unknown boundary in a computational domain. The problem takes the form of a Bernoulli problem where only the Dirichlet datum is known on the boundary that is to be identified, but additional information on the Neumann condition is available on the known part of the boundary. The approach uses a classical constrained optimization problem, where a cost functional is minimized with respect to the unknown boundary, the position of which is defined implicitly by a level set function. To solve the optimization problem a steepest descent algorithm using shape derivatives is applied. In each iteration the cut finite element method is used to obtain high accuracy approximations of the pde-model constraint for a given level set configuration without re-meshing. We consider three different shape derivatives. First the classical one, derived using the continuous optimization problem (optimize then discretize). Then the functional is first discretized using the CutFEM method and the shape derivative is evaluated on the finite element functional (discretize then optimize). Finally we consider a third approach, also using a discretized functional. In this case we do not perturb the domain, but consider a so-called boundary value correction method, where a small correction to the boundary position may be included in the weak boundary condition. Using this correction the shape derivative may be obtained by perturbing a distance parameter in the discrete variational formulation. The theoretical discussion is illustrated with a series of numerical examples showing that all three approaches produce similar result on the proposed Bernoulli problem.

قيم البحث

اقرأ أيضاً

The analysis of linear ill-posed problems often is carried out in function spaces using tools from functional analysis. However, the numerical solution of these problems typically is computed by first discretizing the problem and then applying tools from (finite-dimensional) linear algebra. The present paper explores the feasibility of applying the Chebfun package to solve ill-posed problems. This approach allows a user to work with functions instead of matrices. The solution process therefore is much closer to the analysis of ill-posed problems than standard linear algebra-based solution methods.
Block coordinate descent (BCD) methods approach optimization problems by performing gradient steps along alternating subgroups of coordinates. This is in contrast to full gradient descent, where a gradient step updates all coordinates simultaneously. BCD has been demonstrated to accelerate the gradient method in many practical large-scale applications. Despite its success no convergence analysis for inverse problems is known so far. In this paper, we investigate the BCD method for solving linear inverse problems. As main theoretical result, we show that for operators having a particular tensor product form, the BCD method combined with an appropriate stopping criterion yields a convergent regularization method. To illustrate the theory, we perform numerical experiments comparing the BCD and the full gradient descent method for a system of integral equations. We also present numerical tests for a non-linear inverse problem not covered by our theory, namely one-step inversion in multi-spectral X-ray tomography.
This paper is concerned with solving ill-posed tensor linear equations. These kinds of equations may appear from finite difference discretization of high-dimensional convection-diffusion problems or when partial differential equations in many dimensi ons are discretized by collocation spectral methods. Here, we propose the Tensor Golub--Kahan bidiagonalization (TGKB) algorithm in conjunction with the well known Tikhonov regularization method to solve the mentioned problems. Theoretical results are presented to discuss on conditioning of the Stein tensor equation and to reveal that how the TGKB process can be exploited for general tensor equations. In the last section, some classical test problems are examined to numerically illustrate the feasibility of proposed algorithms and also applications for color image restoration are considered.
In this note we develop a fully explicit cut finite element method for the wave equation. The method is based on using a standard leap frog scheme combined with an extension operator that defines the nodal values outside of the domain in terms of the nodal values inside the domain. We show that the mass matrix associated with the extended finite element space can be lumped leading to a fully explicit scheme. We derive stability estimates for the method and provide optimal order a priori error estimates. Finally, we present some illustrating numerical examples.
82 - Haoran Liu , Michael Neilan , 2021
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur e space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا