ﻻ يوجد ملخص باللغة العربية
We investigate the effects of quenched randomness on topological quantum phase transitions in strongly interacting two-dimensional systems. We focus first on transitions driven by the condensation of a subset of fractionalized quasiparticles (`anyons) identified with `electric charge excitations of a phase with intrinsic topological order. All other anyons have nontrivial mutual statistics with the condensed subset and hence become confined at the anyon condensation transition. Using a combination of microscopically exact duality transformations and asymptotically exact real-space renormalization group techniques applied to these two-dimensional disordered gauge theories, we argue that the resulting critical scaling behavior is `superuniversal across a wide range of such condensation transitions, and is controlled by the same infinite-randomness fixed point as that of the 2D random transverse-field Ising model. We validate this claim using large-scale quantum Monte Carlo simulations that allow us to extract zero-temperature critical exponents and correlation functions in (2+1)D disordered interacting systems. We discuss generalizations of these results to a large class of ground-state and excited-state topological transitions in systems with intrinsic topological order as well as those where topological order is either protected or enriched by global symmetries. When the underlying topological order and the symmetry group are Abelian, our results provide prototypes for topological phase transitions between distinct many-body localized phases.
Metallic phases have been observed in several disordered two dimensional (2d) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2d metallic phases at zero tempe
We study the stability of the Wilson-Fisher fixed point of the quantum $mathrm{O}(2N)$ vector model to quenched disorder in the large-$N$ limit. While a random mass is strongly relevant at the Gaussian fixed point, its effect is screened by the stron
We derive an extended lattice gauge theory type action for quantum dimer models and relate it to the height representations of these systems. We examine the system in two and three dimensions and analyze the phase structure in terms of effective theo
We show that the resistivity rho(T) of disordered ferromagnets near, and above, the Curie temperature T_c generically exhibits a stronger anomaly than the scaling-based Fisher-Langer prediction. Treating transport beyond the Boltzmann description, we
In recent experiments, time-dependent periodic fields are used to create exotic topological phases of matter with potential applications ranging from quantum transport to quantum computing. These nonequilibrium states, at high driving frequencies, ex